Limits...
Ideotype population exploration: growth, photosynthesis, and yield components at different planting densities in winter oilseed rape (Brassica napus L.).

Ma N, Yuan J, Li M, Li J, Zhang L, Liu L, Naeem MS, Zhang C - PLoS ONE (2014)

Bottom Line: Our results indicated that planting densities of 58.5×10(4) plants ha(-1) in ZS11 and 48.0×10(4) plants ha(-1) in HYZ9 have significantly higher yield compared with the density of 27.0×10(4) plants ha(-1) for both varieties.A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield.Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.

View Article: PubMed Central - PubMed

Affiliation: Oil Crops Research Institute Chinese Academy of Agricultural Science, Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture, Wuhan, China.

ABSTRACT
Rapeseed is one of the most important edible oil crops in the world and the seed yield has lagged behind the increasing demand driven by population growth. Winter oilseed rape (Brassica napus L.) is widely cultivated with relatively low yield in China, so it is necessary to find the strategies to improve the expression of yield potential. Planting density has great effects on seed yield of crops. Hence, field experiments were conducted in Wuhan in the Yangtze River basin with one conventional variety (Zhongshuang 11, ZS11) and one hybrid variety (Huayouza 9, HYZ9) at five planting densities (27.0×10(4), 37.5×10(4), 48.0×10(4), 58.5×10(4), 69.0×10(4) plants ha(-1)) during 2010-2012 to investigate the yield components. The physiological traits for high-yield and normal-yield populations were measured during 2011-2013. Our results indicated that planting densities of 58.5×10(4) plants ha(-1) in ZS11 and 48.0×10(4) plants ha(-1) in HYZ9 have significantly higher yield compared with the density of 27.0×10(4) plants ha(-1) for both varieties. The ideal silique numbers for ZS11 and HYZ9 were ∼0.9×10(4) (n m(-2)) and ∼1×10(4) (n m(-2)), respectively, and ideal primary branches for ZS11 and HYZ9 were ∼250 (n m(-2)) and ∼300 (n m(-2)), respectively. The highest leaf area index (LAI) and silique wall area index (SAI) was ∼5.0 and 7.0, respectively. Moreover, higher leaf net photosynthetic rate (Pn) and water use efficiency (WUE) were observed in the high-yield populations. A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield. Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.

Show MeSH
The silique wall area index (SAI) and silique wall photosynthesis in the normal-yield (NY) and high-yield (HY) populations of ZS11 and HYZ9 in 2011–2012 and 2012–2013 growing seasons.(A) and (B) SAI in the NY and HY populations of ZS11 and HYZ9 in 2011–2012 and 2012–2013, respectively. (C) and (D) The silique wall photosynthesis in the NY and HY populations of ZS11 and HYZ9 in 2011–2012 and 2012–2013, respectively.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4269386&req=5

pone-0114232-g006: The silique wall area index (SAI) and silique wall photosynthesis in the normal-yield (NY) and high-yield (HY) populations of ZS11 and HYZ9 in 2011–2012 and 2012–2013 growing seasons.(A) and (B) SAI in the NY and HY populations of ZS11 and HYZ9 in 2011–2012 and 2012–2013, respectively. (C) and (D) The silique wall photosynthesis in the NY and HY populations of ZS11 and HYZ9 in 2011–2012 and 2012–2013, respectively.

Mentions: Within all the populations, the SAI increased rapidly from 7 to 21 days and reached a maximum ∼28 days after peak anthesis. Apparent difference was observed between the high-yield and normal-yield populations from 21 to 42 days after peak anthesis in either variety (Fig. 6A and B). The change trend of silique wall photosynthesis was similar to that of the SAI from 7 to 28 days, and the high-yield populations had longer duration of high photosynthetic rates from 21 to 35 days in both varieties (Fig. 6C and D).


Ideotype population exploration: growth, photosynthesis, and yield components at different planting densities in winter oilseed rape (Brassica napus L.).

Ma N, Yuan J, Li M, Li J, Zhang L, Liu L, Naeem MS, Zhang C - PLoS ONE (2014)

The silique wall area index (SAI) and silique wall photosynthesis in the normal-yield (NY) and high-yield (HY) populations of ZS11 and HYZ9 in 2011–2012 and 2012–2013 growing seasons.(A) and (B) SAI in the NY and HY populations of ZS11 and HYZ9 in 2011–2012 and 2012–2013, respectively. (C) and (D) The silique wall photosynthesis in the NY and HY populations of ZS11 and HYZ9 in 2011–2012 and 2012–2013, respectively.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4269386&req=5

pone-0114232-g006: The silique wall area index (SAI) and silique wall photosynthesis in the normal-yield (NY) and high-yield (HY) populations of ZS11 and HYZ9 in 2011–2012 and 2012–2013 growing seasons.(A) and (B) SAI in the NY and HY populations of ZS11 and HYZ9 in 2011–2012 and 2012–2013, respectively. (C) and (D) The silique wall photosynthesis in the NY and HY populations of ZS11 and HYZ9 in 2011–2012 and 2012–2013, respectively.
Mentions: Within all the populations, the SAI increased rapidly from 7 to 21 days and reached a maximum ∼28 days after peak anthesis. Apparent difference was observed between the high-yield and normal-yield populations from 21 to 42 days after peak anthesis in either variety (Fig. 6A and B). The change trend of silique wall photosynthesis was similar to that of the SAI from 7 to 28 days, and the high-yield populations had longer duration of high photosynthetic rates from 21 to 35 days in both varieties (Fig. 6C and D).

Bottom Line: Our results indicated that planting densities of 58.5×10(4) plants ha(-1) in ZS11 and 48.0×10(4) plants ha(-1) in HYZ9 have significantly higher yield compared with the density of 27.0×10(4) plants ha(-1) for both varieties.A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield.Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.

View Article: PubMed Central - PubMed

Affiliation: Oil Crops Research Institute Chinese Academy of Agricultural Science, Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Key Laboratory of Crop Cultivation and Physiology, Ministry of Agriculture, Wuhan, China.

ABSTRACT
Rapeseed is one of the most important edible oil crops in the world and the seed yield has lagged behind the increasing demand driven by population growth. Winter oilseed rape (Brassica napus L.) is widely cultivated with relatively low yield in China, so it is necessary to find the strategies to improve the expression of yield potential. Planting density has great effects on seed yield of crops. Hence, field experiments were conducted in Wuhan in the Yangtze River basin with one conventional variety (Zhongshuang 11, ZS11) and one hybrid variety (Huayouza 9, HYZ9) at five planting densities (27.0×10(4), 37.5×10(4), 48.0×10(4), 58.5×10(4), 69.0×10(4) plants ha(-1)) during 2010-2012 to investigate the yield components. The physiological traits for high-yield and normal-yield populations were measured during 2011-2013. Our results indicated that planting densities of 58.5×10(4) plants ha(-1) in ZS11 and 48.0×10(4) plants ha(-1) in HYZ9 have significantly higher yield compared with the density of 27.0×10(4) plants ha(-1) for both varieties. The ideal silique numbers for ZS11 and HYZ9 were ∼0.9×10(4) (n m(-2)) and ∼1×10(4) (n m(-2)), respectively, and ideal primary branches for ZS11 and HYZ9 were ∼250 (n m(-2)) and ∼300 (n m(-2)), respectively. The highest leaf area index (LAI) and silique wall area index (SAI) was ∼5.0 and 7.0, respectively. Moreover, higher leaf net photosynthetic rate (Pn) and water use efficiency (WUE) were observed in the high-yield populations. A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield. Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.

Show MeSH