Limits...
Oregano essential oil-pectin edible films as anti-quorum sensing and food antimicrobial agents.

Alvarez MV, Ortega-Ramirez LA, Gutierrez-Pacheco MM, Bernal-Mercado AT, Rodriguez-Garcia I, Gonzalez-Aguilar GA, Ponce A, Moreira Mdel R, Roura SI, Ayala-Zavala JF - Front Microbiol (2014)

Bottom Line: Choleraesuis.Additionally, the application of pectin-OEO films was effective reducing total coliforms, yeast, and molds of shrimp and cucumber slices stored at 4°C during 15 d.These results demonstrated the potential of pectin films enriched with OEO as food related microorganisms and QS inhibitors.

View Article: PubMed Central - PubMed

Affiliation: Consejo Nacional de Investigaciones Científicas y Técnicas - Grupo de Investigación en Ingeniería en Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata Mar del Plata, Argentina.

ABSTRACT
Edible films can be used as carriers for antimicrobial compounds to assure food safety and quality; in addition, pathogenesis of food bacteria is related to a cell to cell communication mechanism called quorum sensing (QS). Oregano essential oil (OEO) has proved to be useful as food antimicrobial; however, its food applications can be compromised by the volatile character of its active constituents. Therefore, formulation of edible films containing OEO can be an alternative to improve its food usages. QS inhibitory activity of OEO and pectin-OEO films was evaluated using Chromobacterium violaceum as bacterial model. Additionally, antibacterial activity was tested against Escherichia coli O157:H7, Salmonella Choleraesuis, Staphylococcus aureus, and Listeria monocytogenes. OEO was effective to inhibit bacterial growth at MIC of 0.24 mg/mL for all tested bacteria and MBC of 0.24, 0.24, 0.48, and 0.24 mg/mL against E. coli O157:H7, S. Choleraesuis, S. aureus, and L. monocytogenes, respectively. Pectin-films incorporated with 36.1 and 25.9 mg/mL of OEO showed inhibition diameters of 16.3 and 15.2 mm for E. coli O157:H7; 18.1 and 24.2 mm for S. Choleraesuis; 20.8 and 20.3 mm for S. aureus; 21.3 and 19.3 mm for L. monocytogenes, respectively. Pectin-OEO film (15.7 mg/mL) was effective against E. coli O157:H7 (9.3 mm), S. aureus (9.7 mm), and L. monocytogenes (9.2 mm), but not for S. Choleraesuis. All concentrations of OEO (0.0156, 0.0312, 0.0625 and 0.125 mg/mL) and pectin-OEO films (15.7, 25.9 and 36.1 mg/mL) showed a significant anti-QS activity expressed as inhibition of violacein production by C. violaceum. Additionally, the application of pectin-OEO films was effective reducing total coliforms, yeast, and molds of shrimp and cucumber slices stored at 4°C during 15 d. These results demonstrated the potential of pectin films enriched with OEO as food related microorganisms and QS inhibitors.

No MeSH data available.


Related in: MedlinePlus

Effect of OEO on the microbial load (log CFU/g), (A) total coliforms and (B) yeast and molds in shrimp; (C) total coliforms and (D) yeast and molds in sliced cucumber throughout 15 days of storage at 4°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4269197&req=5

Figure 3: Effect of OEO on the microbial load (log CFU/g), (A) total coliforms and (B) yeast and molds in shrimp; (C) total coliforms and (D) yeast and molds in sliced cucumber throughout 15 days of storage at 4°C.

Mentions: Figure 3 shows the effectiveness of pectin-OEO coatings to reduce the growth of total coliforms, yeast and molds of shrimp and sliced cucumber stored at 4°C during 15 days. Pectin-OEO coatings of 15.7, 25.9, and 36.1 mg/mL were effective reducing 1.39 log CFU/g of total coliforms with respect to control fruit at day 0. All treatments showed an increment in total coliforms load during the storage time; however, the pectin-OEO coated shrimp showed lower load during the storage (Figure 3A). Similarly, the pectin-OEO coated shrimp (Figure 3B) caused a general reduction of total yeast and molds of 1.4 log CFU/g with respect to control and pectin films (2.39 log CFU/g) and this difference remained throughout the storage time. The effect of pectin-OEO coatings on the microbial load of fresh-cut cucumber (Figures 3C,D) was similar to that observed for shrimps. The three concentrations of pectin-OEO coatings maintained the total coliforms at 1 log CFU/g during the storage time (C) compared with the control and pectin coating that showed 7.28 and 6.34 log CFU/g at the end of the storage. Similarly to the effect observed in shrimp, total yeast and molds load of sliced cucumber coated with the pectin-OEO formulations (Figure 3D) maintained the load at 1 log CFU/g compared with control and pectin coated fruit that shown 3.19 and 4.07 log CFU/g throughout the storage. These results demonstrated that the incorporation of OEO in pectin coatings reduced the microbial growth of the studied food, showing a protective effect over the storage time.


Oregano essential oil-pectin edible films as anti-quorum sensing and food antimicrobial agents.

Alvarez MV, Ortega-Ramirez LA, Gutierrez-Pacheco MM, Bernal-Mercado AT, Rodriguez-Garcia I, Gonzalez-Aguilar GA, Ponce A, Moreira Mdel R, Roura SI, Ayala-Zavala JF - Front Microbiol (2014)

Effect of OEO on the microbial load (log CFU/g), (A) total coliforms and (B) yeast and molds in shrimp; (C) total coliforms and (D) yeast and molds in sliced cucumber throughout 15 days of storage at 4°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4269197&req=5

Figure 3: Effect of OEO on the microbial load (log CFU/g), (A) total coliforms and (B) yeast and molds in shrimp; (C) total coliforms and (D) yeast and molds in sliced cucumber throughout 15 days of storage at 4°C.
Mentions: Figure 3 shows the effectiveness of pectin-OEO coatings to reduce the growth of total coliforms, yeast and molds of shrimp and sliced cucumber stored at 4°C during 15 days. Pectin-OEO coatings of 15.7, 25.9, and 36.1 mg/mL were effective reducing 1.39 log CFU/g of total coliforms with respect to control fruit at day 0. All treatments showed an increment in total coliforms load during the storage time; however, the pectin-OEO coated shrimp showed lower load during the storage (Figure 3A). Similarly, the pectin-OEO coated shrimp (Figure 3B) caused a general reduction of total yeast and molds of 1.4 log CFU/g with respect to control and pectin films (2.39 log CFU/g) and this difference remained throughout the storage time. The effect of pectin-OEO coatings on the microbial load of fresh-cut cucumber (Figures 3C,D) was similar to that observed for shrimps. The three concentrations of pectin-OEO coatings maintained the total coliforms at 1 log CFU/g during the storage time (C) compared with the control and pectin coating that showed 7.28 and 6.34 log CFU/g at the end of the storage. Similarly to the effect observed in shrimp, total yeast and molds load of sliced cucumber coated with the pectin-OEO formulations (Figure 3D) maintained the load at 1 log CFU/g compared with control and pectin coated fruit that shown 3.19 and 4.07 log CFU/g throughout the storage. These results demonstrated that the incorporation of OEO in pectin coatings reduced the microbial growth of the studied food, showing a protective effect over the storage time.

Bottom Line: Choleraesuis.Additionally, the application of pectin-OEO films was effective reducing total coliforms, yeast, and molds of shrimp and cucumber slices stored at 4°C during 15 d.These results demonstrated the potential of pectin films enriched with OEO as food related microorganisms and QS inhibitors.

View Article: PubMed Central - PubMed

Affiliation: Consejo Nacional de Investigaciones Científicas y Técnicas - Grupo de Investigación en Ingeniería en Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata Mar del Plata, Argentina.

ABSTRACT
Edible films can be used as carriers for antimicrobial compounds to assure food safety and quality; in addition, pathogenesis of food bacteria is related to a cell to cell communication mechanism called quorum sensing (QS). Oregano essential oil (OEO) has proved to be useful as food antimicrobial; however, its food applications can be compromised by the volatile character of its active constituents. Therefore, formulation of edible films containing OEO can be an alternative to improve its food usages. QS inhibitory activity of OEO and pectin-OEO films was evaluated using Chromobacterium violaceum as bacterial model. Additionally, antibacterial activity was tested against Escherichia coli O157:H7, Salmonella Choleraesuis, Staphylococcus aureus, and Listeria monocytogenes. OEO was effective to inhibit bacterial growth at MIC of 0.24 mg/mL for all tested bacteria and MBC of 0.24, 0.24, 0.48, and 0.24 mg/mL against E. coli O157:H7, S. Choleraesuis, S. aureus, and L. monocytogenes, respectively. Pectin-films incorporated with 36.1 and 25.9 mg/mL of OEO showed inhibition diameters of 16.3 and 15.2 mm for E. coli O157:H7; 18.1 and 24.2 mm for S. Choleraesuis; 20.8 and 20.3 mm for S. aureus; 21.3 and 19.3 mm for L. monocytogenes, respectively. Pectin-OEO film (15.7 mg/mL) was effective against E. coli O157:H7 (9.3 mm), S. aureus (9.7 mm), and L. monocytogenes (9.2 mm), but not for S. Choleraesuis. All concentrations of OEO (0.0156, 0.0312, 0.0625 and 0.125 mg/mL) and pectin-OEO films (15.7, 25.9 and 36.1 mg/mL) showed a significant anti-QS activity expressed as inhibition of violacein production by C. violaceum. Additionally, the application of pectin-OEO films was effective reducing total coliforms, yeast, and molds of shrimp and cucumber slices stored at 4°C during 15 d. These results demonstrated the potential of pectin films enriched with OEO as food related microorganisms and QS inhibitors.

No MeSH data available.


Related in: MedlinePlus