Limits...
Social stress increases expression of hemoglobin genes in mouse prefrontal cortex.

Stankiewicz AM, Goscik J, Swiergiel AH, Majewska A, Wieczorek M, Juszczak GR, Lisowski P - BMC Neurosci (2014)

Bottom Line: Chronic stress increased also expression of Timp1 and Ppbp that are involved in reaction to vascular injury.Acute stress did not affect expression of hemoglobin genes but it altered expression of Fam107a (Drr1) and Agxt2l1 (Etnppl) that have been implicated in psychiatric diseases.The observed up-regulation of genes associated with vascular system and brain injury suggests that stressful social encounters may affect brain function through the stress-induced dysfunction of the vascular system.

View Article: PubMed Central - PubMed

Affiliation: Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552, Magdalenka, Poland. adrianstankiewicz85@gmail.com.

ABSTRACT

Background: In order to better understand the effects of social stress on the prefrontal cortex, we investigated gene expression in mice subjected to acute and repeated social encounters of different duration using microarrays.

Results: The most important finding was identification of hemoglobin genes (Hbb-b1, Hbb-b2, Hba-a1, Hba-a2, Beta-S) as potential markers of chronic social stress in mice. Expression of these genes was progressively increased in animals subjected to 8 and 13 days of repeated stress and was correlated with altered expression of Mgp (Mglap), Fbln1, 1500015O10Rik (Ecrg4), SLC16A10, and Mndal. Chronic stress increased also expression of Timp1 and Ppbp that are involved in reaction to vascular injury. Acute stress did not affect expression of hemoglobin genes but it altered expression of Fam107a (Drr1) and Agxt2l1 (Etnppl) that have been implicated in psychiatric diseases.

Conclusions: The observed up-regulation of genes associated with vascular system and brain injury suggests that stressful social encounters may affect brain function through the stress-induced dysfunction of the vascular system.

Show MeSH

Related in: MedlinePlus

Body weight gain 24 h after the first social encounter in all four groups used in the microarray experiment. Values are presented as mean ± SEM. N = 12,* - p < 0.05, ** - p < 0.01, *** - p < 0.001; compared with corresponding control group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4269175&req=5

Fig3: Body weight gain 24 h after the first social encounter in all four groups used in the microarray experiment. Values are presented as mean ± SEM. N = 12,* - p < 0.05, ** - p < 0.01, *** - p < 0.001; compared with corresponding control group.

Mentions: Mice displayed cyclic fluctuation in food intake after separation from littermates (Figure 1). These fluctuations were associated with the cycle of work of personnel responsible for maintenance of the mouse colony. Cyclic changes in food intake stabilized during the period of habituation. Social stress significantly decreased food intake in all stressed groups (Figure 1). After several days of repeated social stress, food intake returned to the baseline and then increased during the recovery period (Figure 1). Total weight of mice has not been significantly altered by stress (Figure 2) but there was a significant decrease in body weight gains in all stressed groups 24 h after first social encounter (Figure 3). Thymi were significantly lighter and spleens were significantly heavier in the stressed animals (Figure 4A and B). In case of adrenal glands the results were characterized by lack of stable baseline and large differences in variability between groups (Figure 4C). High variability could result from difficulty to precisely separate small adrenal glands from surrounding adipose tissue. Differences in weight of adrenal glands were insignificant although the p value approached the level of significance in case of animals subjected to 13 days of stress (p = 0.09). In a separate experiment it was found that a single social encounter with a group of mice induced large increase in blood corticosterone concentration 5 minutes after the termination of stress procedure (Figure 5).Figure 1


Social stress increases expression of hemoglobin genes in mouse prefrontal cortex.

Stankiewicz AM, Goscik J, Swiergiel AH, Majewska A, Wieczorek M, Juszczak GR, Lisowski P - BMC Neurosci (2014)

Body weight gain 24 h after the first social encounter in all four groups used in the microarray experiment. Values are presented as mean ± SEM. N = 12,* - p < 0.05, ** - p < 0.01, *** - p < 0.001; compared with corresponding control group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4269175&req=5

Fig3: Body weight gain 24 h after the first social encounter in all four groups used in the microarray experiment. Values are presented as mean ± SEM. N = 12,* - p < 0.05, ** - p < 0.01, *** - p < 0.001; compared with corresponding control group.
Mentions: Mice displayed cyclic fluctuation in food intake after separation from littermates (Figure 1). These fluctuations were associated with the cycle of work of personnel responsible for maintenance of the mouse colony. Cyclic changes in food intake stabilized during the period of habituation. Social stress significantly decreased food intake in all stressed groups (Figure 1). After several days of repeated social stress, food intake returned to the baseline and then increased during the recovery period (Figure 1). Total weight of mice has not been significantly altered by stress (Figure 2) but there was a significant decrease in body weight gains in all stressed groups 24 h after first social encounter (Figure 3). Thymi were significantly lighter and spleens were significantly heavier in the stressed animals (Figure 4A and B). In case of adrenal glands the results were characterized by lack of stable baseline and large differences in variability between groups (Figure 4C). High variability could result from difficulty to precisely separate small adrenal glands from surrounding adipose tissue. Differences in weight of adrenal glands were insignificant although the p value approached the level of significance in case of animals subjected to 13 days of stress (p = 0.09). In a separate experiment it was found that a single social encounter with a group of mice induced large increase in blood corticosterone concentration 5 minutes after the termination of stress procedure (Figure 5).Figure 1

Bottom Line: Chronic stress increased also expression of Timp1 and Ppbp that are involved in reaction to vascular injury.Acute stress did not affect expression of hemoglobin genes but it altered expression of Fam107a (Drr1) and Agxt2l1 (Etnppl) that have been implicated in psychiatric diseases.The observed up-regulation of genes associated with vascular system and brain injury suggests that stressful social encounters may affect brain function through the stress-induced dysfunction of the vascular system.

View Article: PubMed Central - PubMed

Affiliation: Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552, Magdalenka, Poland. adrianstankiewicz85@gmail.com.

ABSTRACT

Background: In order to better understand the effects of social stress on the prefrontal cortex, we investigated gene expression in mice subjected to acute and repeated social encounters of different duration using microarrays.

Results: The most important finding was identification of hemoglobin genes (Hbb-b1, Hbb-b2, Hba-a1, Hba-a2, Beta-S) as potential markers of chronic social stress in mice. Expression of these genes was progressively increased in animals subjected to 8 and 13 days of repeated stress and was correlated with altered expression of Mgp (Mglap), Fbln1, 1500015O10Rik (Ecrg4), SLC16A10, and Mndal. Chronic stress increased also expression of Timp1 and Ppbp that are involved in reaction to vascular injury. Acute stress did not affect expression of hemoglobin genes but it altered expression of Fam107a (Drr1) and Agxt2l1 (Etnppl) that have been implicated in psychiatric diseases.

Conclusions: The observed up-regulation of genes associated with vascular system and brain injury suggests that stressful social encounters may affect brain function through the stress-induced dysfunction of the vascular system.

Show MeSH
Related in: MedlinePlus