Limits...
Long distance movement of an Arabidopsis Translationally Controlled Tumor Protein (AtTCTP2) mRNA and protein in tobacco.

Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R - Front Plant Sci (2014)

Bottom Line: The results indicate that both AtTCTP2 mRNA and protein are capable of moving long distance in both directions (stock-scion and scion-stock) with a tendency for movement from source to sink tissue (stock to scion).In addition, the protein localization pattern in transgenic aerial and primary roots was basically the same, indicating specific nuclear destination in roots, but also in leaves.These findings provide an approach to understand the role of long-distance movement in the function of plant TCTPs, supporting the notion that some of these act in a non-cell autonomous manner, as the human counterpart, the Histamine Releasing Factor (HRF).

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico, Mexico.

ABSTRACT
Translationally Controlled Tumor Protein (TCTP) is an almost ubiquitous protein found in eukaryotes, fundamental for the regulation of development and general growth. The multiple functions of TCTP have been inferred from its involvement in several cell pathways, but the specific function of TCTP is still not known in detail. On the other hand, TCTP seems to respond to a plethora of external signals, and appears to be regulated at the transcriptional and/or translational levels by mechanisms yet to be determined. In the present work, we analyzed the capacity of AtTCTP2 gene products (mRNA and protein) to translocate long distance through tobacco heterografts (transgenic/WT and WT/transgenic). The results indicate that both AtTCTP2 mRNA and protein are capable of moving long distance in both directions (stock-scion and scion-stock) with a tendency for movement from source to sink tissue (stock to scion). Interestingly, aerial roots emerged only in heterografts where the protein was detected in both stock and scion, suggesting a correlation between the presence of AtTCTP2 and aerial root appearance. More detailed analysis showed that these aerial roots harbored the transgene and expressed both transcript and protein. In addition, the protein localization pattern in transgenic aerial and primary roots was basically the same, indicating specific nuclear destination in roots, but also in leaves. These findings provide an approach to understand the role of long-distance movement in the function of plant TCTPs, supporting the notion that some of these act in a non-cell autonomous manner, as the human counterpart, the Histamine Releasing Factor (HRF).

No MeSH data available.


Related in: MedlinePlus

AtTCTP2-GFP accumulation sites are conserved. Laser confocal microscopy was performed to detect the fluorescence associated to GFP fused to AtTCTP2 both in young-leaves near apical meristems (from scions) and in source well developed leaves (from stocks) for each graft tested. In WT/AtTCTP2 grafts the fusion protein AtTCTP2-GFP was identified in both (A) stock and (B) scion in all grafts (see Table 1) presenting the same localization pattern characterized by signal detection in stomata (S) and nuclei (N), besides mesophyll (M). (C,D) In AtTCTP2/WT grafts the fusion protein showed the same localization pattern previously described, but the signal was only observed in four wt stocks of the seven grafts performed (see Table 1). WT/WT homografts were used as controls, where no fluorescence signal was detected in (E) scion or (F) stock. (G) Visual representation of grafts separated by a white dashed line, the selected tissue for RT-PCR is delimited by white dashed lines and for fluorescence confocal microscopy in red squares. Size bars: 25 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4269120&req=5

Figure 4: AtTCTP2-GFP accumulation sites are conserved. Laser confocal microscopy was performed to detect the fluorescence associated to GFP fused to AtTCTP2 both in young-leaves near apical meristems (from scions) and in source well developed leaves (from stocks) for each graft tested. In WT/AtTCTP2 grafts the fusion protein AtTCTP2-GFP was identified in both (A) stock and (B) scion in all grafts (see Table 1) presenting the same localization pattern characterized by signal detection in stomata (S) and nuclei (N), besides mesophyll (M). (C,D) In AtTCTP2/WT grafts the fusion protein showed the same localization pattern previously described, but the signal was only observed in four wt stocks of the seven grafts performed (see Table 1). WT/WT homografts were used as controls, where no fluorescence signal was detected in (E) scion or (F) stock. (G) Visual representation of grafts separated by a white dashed line, the selected tissue for RT-PCR is delimited by white dashed lines and for fluorescence confocal microscopy in red squares. Size bars: 25 μm.

Mentions: To confirm the long-distance movement of AtTCTP2 protein, as well as the localization pattern of the fluorescent fusion protein, confocal microscopy was used to detect GFP-associated fluorescence and thus AtTCTP2. Tissue samples were collected from the same leaves used for RT-PCR (marked in red in Figure 4G), and prepared for confocal analysis. GFP fluorescence was detected in mesophyll, stomata and nuclei in leaf tissue from transgenic stocks or scions (Figures 4A,D), which is the same accumulation pattern of AtTCTP2 in Arabidopsis (Toscano-Morales et al., submitted). GFP signal was also identified in all WT scions and in four out of seven stocks (Figures 4B,E; Table 1) showing a highly similar pattern of localization. No signal was detected in WT/WT controls either in stock or scion (Figures 4C,F). These observations suggest the AtTCTP2-GFP fusion protein moves long distance in both directions, but preferentially from stock to scion (Table 1). Interestingly, AtTCTP2-GFP protein was detected in all WT scions, even in those samples negative by RT-PCR (Table 1). This also suggests that the fluorescence signal detected could not only be attributed to the translation of this mRNA once it moved long-distance but to the actual movement of AtTCTP2 as protein. Overall, both RT-PCR and fluorescence detection of AtTCTP2-GFP indicate its capacity for long-distance movement as protein and/or as transcript.


Long distance movement of an Arabidopsis Translationally Controlled Tumor Protein (AtTCTP2) mRNA and protein in tobacco.

Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R - Front Plant Sci (2014)

AtTCTP2-GFP accumulation sites are conserved. Laser confocal microscopy was performed to detect the fluorescence associated to GFP fused to AtTCTP2 both in young-leaves near apical meristems (from scions) and in source well developed leaves (from stocks) for each graft tested. In WT/AtTCTP2 grafts the fusion protein AtTCTP2-GFP was identified in both (A) stock and (B) scion in all grafts (see Table 1) presenting the same localization pattern characterized by signal detection in stomata (S) and nuclei (N), besides mesophyll (M). (C,D) In AtTCTP2/WT grafts the fusion protein showed the same localization pattern previously described, but the signal was only observed in four wt stocks of the seven grafts performed (see Table 1). WT/WT homografts were used as controls, where no fluorescence signal was detected in (E) scion or (F) stock. (G) Visual representation of grafts separated by a white dashed line, the selected tissue for RT-PCR is delimited by white dashed lines and for fluorescence confocal microscopy in red squares. Size bars: 25 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4269120&req=5

Figure 4: AtTCTP2-GFP accumulation sites are conserved. Laser confocal microscopy was performed to detect the fluorescence associated to GFP fused to AtTCTP2 both in young-leaves near apical meristems (from scions) and in source well developed leaves (from stocks) for each graft tested. In WT/AtTCTP2 grafts the fusion protein AtTCTP2-GFP was identified in both (A) stock and (B) scion in all grafts (see Table 1) presenting the same localization pattern characterized by signal detection in stomata (S) and nuclei (N), besides mesophyll (M). (C,D) In AtTCTP2/WT grafts the fusion protein showed the same localization pattern previously described, but the signal was only observed in four wt stocks of the seven grafts performed (see Table 1). WT/WT homografts were used as controls, where no fluorescence signal was detected in (E) scion or (F) stock. (G) Visual representation of grafts separated by a white dashed line, the selected tissue for RT-PCR is delimited by white dashed lines and for fluorescence confocal microscopy in red squares. Size bars: 25 μm.
Mentions: To confirm the long-distance movement of AtTCTP2 protein, as well as the localization pattern of the fluorescent fusion protein, confocal microscopy was used to detect GFP-associated fluorescence and thus AtTCTP2. Tissue samples were collected from the same leaves used for RT-PCR (marked in red in Figure 4G), and prepared for confocal analysis. GFP fluorescence was detected in mesophyll, stomata and nuclei in leaf tissue from transgenic stocks or scions (Figures 4A,D), which is the same accumulation pattern of AtTCTP2 in Arabidopsis (Toscano-Morales et al., submitted). GFP signal was also identified in all WT scions and in four out of seven stocks (Figures 4B,E; Table 1) showing a highly similar pattern of localization. No signal was detected in WT/WT controls either in stock or scion (Figures 4C,F). These observations suggest the AtTCTP2-GFP fusion protein moves long distance in both directions, but preferentially from stock to scion (Table 1). Interestingly, AtTCTP2-GFP protein was detected in all WT scions, even in those samples negative by RT-PCR (Table 1). This also suggests that the fluorescence signal detected could not only be attributed to the translation of this mRNA once it moved long-distance but to the actual movement of AtTCTP2 as protein. Overall, both RT-PCR and fluorescence detection of AtTCTP2-GFP indicate its capacity for long-distance movement as protein and/or as transcript.

Bottom Line: The results indicate that both AtTCTP2 mRNA and protein are capable of moving long distance in both directions (stock-scion and scion-stock) with a tendency for movement from source to sink tissue (stock to scion).In addition, the protein localization pattern in transgenic aerial and primary roots was basically the same, indicating specific nuclear destination in roots, but also in leaves.These findings provide an approach to understand the role of long-distance movement in the function of plant TCTPs, supporting the notion that some of these act in a non-cell autonomous manner, as the human counterpart, the Histamine Releasing Factor (HRF).

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico, Mexico.

ABSTRACT
Translationally Controlled Tumor Protein (TCTP) is an almost ubiquitous protein found in eukaryotes, fundamental for the regulation of development and general growth. The multiple functions of TCTP have been inferred from its involvement in several cell pathways, but the specific function of TCTP is still not known in detail. On the other hand, TCTP seems to respond to a plethora of external signals, and appears to be regulated at the transcriptional and/or translational levels by mechanisms yet to be determined. In the present work, we analyzed the capacity of AtTCTP2 gene products (mRNA and protein) to translocate long distance through tobacco heterografts (transgenic/WT and WT/transgenic). The results indicate that both AtTCTP2 mRNA and protein are capable of moving long distance in both directions (stock-scion and scion-stock) with a tendency for movement from source to sink tissue (stock to scion). Interestingly, aerial roots emerged only in heterografts where the protein was detected in both stock and scion, suggesting a correlation between the presence of AtTCTP2 and aerial root appearance. More detailed analysis showed that these aerial roots harbored the transgene and expressed both transcript and protein. In addition, the protein localization pattern in transgenic aerial and primary roots was basically the same, indicating specific nuclear destination in roots, but also in leaves. These findings provide an approach to understand the role of long-distance movement in the function of plant TCTPs, supporting the notion that some of these act in a non-cell autonomous manner, as the human counterpart, the Histamine Releasing Factor (HRF).

No MeSH data available.


Related in: MedlinePlus