Limits...
Long distance movement of an Arabidopsis Translationally Controlled Tumor Protein (AtTCTP2) mRNA and protein in tobacco.

Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R - Front Plant Sci (2014)

Bottom Line: The results indicate that both AtTCTP2 mRNA and protein are capable of moving long distance in both directions (stock-scion and scion-stock) with a tendency for movement from source to sink tissue (stock to scion).In addition, the protein localization pattern in transgenic aerial and primary roots was basically the same, indicating specific nuclear destination in roots, but also in leaves.These findings provide an approach to understand the role of long-distance movement in the function of plant TCTPs, supporting the notion that some of these act in a non-cell autonomous manner, as the human counterpart, the Histamine Releasing Factor (HRF).

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico, Mexico.

ABSTRACT
Translationally Controlled Tumor Protein (TCTP) is an almost ubiquitous protein found in eukaryotes, fundamental for the regulation of development and general growth. The multiple functions of TCTP have been inferred from its involvement in several cell pathways, but the specific function of TCTP is still not known in detail. On the other hand, TCTP seems to respond to a plethora of external signals, and appears to be regulated at the transcriptional and/or translational levels by mechanisms yet to be determined. In the present work, we analyzed the capacity of AtTCTP2 gene products (mRNA and protein) to translocate long distance through tobacco heterografts (transgenic/WT and WT/transgenic). The results indicate that both AtTCTP2 mRNA and protein are capable of moving long distance in both directions (stock-scion and scion-stock) with a tendency for movement from source to sink tissue (stock to scion). Interestingly, aerial roots emerged only in heterografts where the protein was detected in both stock and scion, suggesting a correlation between the presence of AtTCTP2 and aerial root appearance. More detailed analysis showed that these aerial roots harbored the transgene and expressed both transcript and protein. In addition, the protein localization pattern in transgenic aerial and primary roots was basically the same, indicating specific nuclear destination in roots, but also in leaves. These findings provide an approach to understand the role of long-distance movement in the function of plant TCTPs, supporting the notion that some of these act in a non-cell autonomous manner, as the human counterpart, the Histamine Releasing Factor (HRF).

No MeSH data available.


Related in: MedlinePlus

Quantification of AtTCTP2-GFP mRNA long distance movement suggests preference for directional movement from rootstock to scion. Total RNA was extracted from transgenic or WT rootstocks and scions and homogenized to a given concentration (100 ng/μl) to be used as templates to perform Real Time qRT-PCR. GFP (green) and AtTCTP2 (blue) were quantified in all cases, using BAR as a negative control for mRNA movement. mRNA movement percentages for GFP, AtTCTP2 and BAR from rootstock to scion (WT/AtTCTP2-) and vice versa (AtTCTP2/WT) were determined by relating fold changes between transgenic and wt components on the graft after normalizing against 18S as reference gene. Three technical replicates were performed in each case, given as means ± SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4269120&req=5

Figure 2: Quantification of AtTCTP2-GFP mRNA long distance movement suggests preference for directional movement from rootstock to scion. Total RNA was extracted from transgenic or WT rootstocks and scions and homogenized to a given concentration (100 ng/μl) to be used as templates to perform Real Time qRT-PCR. GFP (green) and AtTCTP2 (blue) were quantified in all cases, using BAR as a negative control for mRNA movement. mRNA movement percentages for GFP, AtTCTP2 and BAR from rootstock to scion (WT/AtTCTP2-) and vice versa (AtTCTP2/WT) were determined by relating fold changes between transgenic and wt components on the graft after normalizing against 18S as reference gene. Three technical replicates were performed in each case, given as means ± SE.

Mentions: The movement of AtTCTP2-GFP mRNA from transgenic stocks to WT scions, and from transgenic scions to WT rootstocks was determined by quantitative RT-PCR. The results indicate that the percentage of transcript that moved across the graft union, obtained as the ratio of AtTCTP2-GFP mRNA present in the non-transgenic scion, and that in the transgenic stock, is between 7 and 9% (Figure 2). Interestingly, AtTCTP-GFP mRNA was also detected moving rootward from transgenic scion to non-transgenic WT stock, albeit at lower efficiencies (between 1 and 1.5%).


Long distance movement of an Arabidopsis Translationally Controlled Tumor Protein (AtTCTP2) mRNA and protein in tobacco.

Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R - Front Plant Sci (2014)

Quantification of AtTCTP2-GFP mRNA long distance movement suggests preference for directional movement from rootstock to scion. Total RNA was extracted from transgenic or WT rootstocks and scions and homogenized to a given concentration (100 ng/μl) to be used as templates to perform Real Time qRT-PCR. GFP (green) and AtTCTP2 (blue) were quantified in all cases, using BAR as a negative control for mRNA movement. mRNA movement percentages for GFP, AtTCTP2 and BAR from rootstock to scion (WT/AtTCTP2-) and vice versa (AtTCTP2/WT) were determined by relating fold changes between transgenic and wt components on the graft after normalizing against 18S as reference gene. Three technical replicates were performed in each case, given as means ± SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4269120&req=5

Figure 2: Quantification of AtTCTP2-GFP mRNA long distance movement suggests preference for directional movement from rootstock to scion. Total RNA was extracted from transgenic or WT rootstocks and scions and homogenized to a given concentration (100 ng/μl) to be used as templates to perform Real Time qRT-PCR. GFP (green) and AtTCTP2 (blue) were quantified in all cases, using BAR as a negative control for mRNA movement. mRNA movement percentages for GFP, AtTCTP2 and BAR from rootstock to scion (WT/AtTCTP2-) and vice versa (AtTCTP2/WT) were determined by relating fold changes between transgenic and wt components on the graft after normalizing against 18S as reference gene. Three technical replicates were performed in each case, given as means ± SE.
Mentions: The movement of AtTCTP2-GFP mRNA from transgenic stocks to WT scions, and from transgenic scions to WT rootstocks was determined by quantitative RT-PCR. The results indicate that the percentage of transcript that moved across the graft union, obtained as the ratio of AtTCTP2-GFP mRNA present in the non-transgenic scion, and that in the transgenic stock, is between 7 and 9% (Figure 2). Interestingly, AtTCTP-GFP mRNA was also detected moving rootward from transgenic scion to non-transgenic WT stock, albeit at lower efficiencies (between 1 and 1.5%).

Bottom Line: The results indicate that both AtTCTP2 mRNA and protein are capable of moving long distance in both directions (stock-scion and scion-stock) with a tendency for movement from source to sink tissue (stock to scion).In addition, the protein localization pattern in transgenic aerial and primary roots was basically the same, indicating specific nuclear destination in roots, but also in leaves.These findings provide an approach to understand the role of long-distance movement in the function of plant TCTPs, supporting the notion that some of these act in a non-cell autonomous manner, as the human counterpart, the Histamine Releasing Factor (HRF).

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico, Mexico.

ABSTRACT
Translationally Controlled Tumor Protein (TCTP) is an almost ubiquitous protein found in eukaryotes, fundamental for the regulation of development and general growth. The multiple functions of TCTP have been inferred from its involvement in several cell pathways, but the specific function of TCTP is still not known in detail. On the other hand, TCTP seems to respond to a plethora of external signals, and appears to be regulated at the transcriptional and/or translational levels by mechanisms yet to be determined. In the present work, we analyzed the capacity of AtTCTP2 gene products (mRNA and protein) to translocate long distance through tobacco heterografts (transgenic/WT and WT/transgenic). The results indicate that both AtTCTP2 mRNA and protein are capable of moving long distance in both directions (stock-scion and scion-stock) with a tendency for movement from source to sink tissue (stock to scion). Interestingly, aerial roots emerged only in heterografts where the protein was detected in both stock and scion, suggesting a correlation between the presence of AtTCTP2 and aerial root appearance. More detailed analysis showed that these aerial roots harbored the transgene and expressed both transcript and protein. In addition, the protein localization pattern in transgenic aerial and primary roots was basically the same, indicating specific nuclear destination in roots, but also in leaves. These findings provide an approach to understand the role of long-distance movement in the function of plant TCTPs, supporting the notion that some of these act in a non-cell autonomous manner, as the human counterpart, the Histamine Releasing Factor (HRF).

No MeSH data available.


Related in: MedlinePlus