Limits...
Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.

Mao K, Jiang L, Bo W, Xu F, Wu R - PLoS ONE (2014)

Bottom Line: Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype.In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light.Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc) assay.

View Article: PubMed Central - PubMed

Affiliation: Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.

ABSTRACT
Cryptochromes are photolyase-like blue/UV-A light receptors that evolved from photolyases. In plants, cryptochromes regulate various aspects of plant growth and development. Despite of their involvement in the control of important plant traits, however, most studies on cryptochromes have focused on lower plants and herbaceous crops, and no data on cryptochrome function are available for forest trees. In this study, we isolated a cryptochrome gene, PeCRY1, from Euphrates poplar (Populus euphratica), and analyzed its structure and function in detail. The deduced PeCRY1 amino acid sequence contained a conserved N-terminal photolyase-homologous region (PHR) domain as well as a C-terminal DQXVP-acidic-STAES (DAS) domain. Secondary and tertiary structure analysis showed that PeCRY1 shares high similarity with AtCRY1 from Arabidopsis thaliana. PeCRY1 expression was upregulated at the mRNA level by light. Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype. In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light. Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc) assay. Our data provide evidence for the involvement of PeCRY1 in the control of photomorphogenesis in poplar.

No MeSH data available.


Hydrophilicity/hydrophobicity analysis and PeCRY1 transmembrane domain prediction.(A) Hydrophilicity/hydrophobicity analysis of PeCRY1 performed using the Kyte and Doolittle method. A score of 1.8 is indicated by the red line. (B) PeCRY1 transmembrane domain prediction using DNAman version 5.2.2 software with default options. Predicted transmembrane regions are indicated by boxes above the profile. (C) PeCRY1 nuclear localization signal (NLS) prediction using a simple hidden Markov model (HMM) and NLStradamus software. The analysis was performed using both a 2-state HMM dynamic model (above) and a 4-state HMM static model (below).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4264880&req=5

pone-0115201-g003: Hydrophilicity/hydrophobicity analysis and PeCRY1 transmembrane domain prediction.(A) Hydrophilicity/hydrophobicity analysis of PeCRY1 performed using the Kyte and Doolittle method. A score of 1.8 is indicated by the red line. (B) PeCRY1 transmembrane domain prediction using DNAman version 5.2.2 software with default options. Predicted transmembrane regions are indicated by boxes above the profile. (C) PeCRY1 nuclear localization signal (NLS) prediction using a simple hidden Markov model (HMM) and NLStradamus software. The analysis was performed using both a 2-state HMM dynamic model (above) and a 4-state HMM static model (below).

Mentions: We also investigated the hydrophilicity/hydrophobicity of PeCRY1 using the Kyte and Doolittle method (http://gcat.davidson.edu/DGPB/kd/kyte-doolittle.htm) [53]. The majority of PeCRY1 amino acids were hydrophilic, and almost all of the C-terminal region amino acids were hydrophilic, indicating that PeCRY1 is a hydrophilic protein (Fig. 3A). In addition, two PeCRY1 transmembrane domains with scores above 1.8 were also predicted using the Kyte and Doolittle method (Fig. 3A). To confirm this result, we examined the PeCRY1 transmembrane domains using DNAman software, which identified two possible transmembrane domains in PeCRY1, the first located at amino acids 23–40 and the second at amino acids 351–369 (Fig. 3B), in agreement with the results obtained using the Kyte and Doolittle method.


Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.

Mao K, Jiang L, Bo W, Xu F, Wu R - PLoS ONE (2014)

Hydrophilicity/hydrophobicity analysis and PeCRY1 transmembrane domain prediction.(A) Hydrophilicity/hydrophobicity analysis of PeCRY1 performed using the Kyte and Doolittle method. A score of 1.8 is indicated by the red line. (B) PeCRY1 transmembrane domain prediction using DNAman version 5.2.2 software with default options. Predicted transmembrane regions are indicated by boxes above the profile. (C) PeCRY1 nuclear localization signal (NLS) prediction using a simple hidden Markov model (HMM) and NLStradamus software. The analysis was performed using both a 2-state HMM dynamic model (above) and a 4-state HMM static model (below).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4264880&req=5

pone-0115201-g003: Hydrophilicity/hydrophobicity analysis and PeCRY1 transmembrane domain prediction.(A) Hydrophilicity/hydrophobicity analysis of PeCRY1 performed using the Kyte and Doolittle method. A score of 1.8 is indicated by the red line. (B) PeCRY1 transmembrane domain prediction using DNAman version 5.2.2 software with default options. Predicted transmembrane regions are indicated by boxes above the profile. (C) PeCRY1 nuclear localization signal (NLS) prediction using a simple hidden Markov model (HMM) and NLStradamus software. The analysis was performed using both a 2-state HMM dynamic model (above) and a 4-state HMM static model (below).
Mentions: We also investigated the hydrophilicity/hydrophobicity of PeCRY1 using the Kyte and Doolittle method (http://gcat.davidson.edu/DGPB/kd/kyte-doolittle.htm) [53]. The majority of PeCRY1 amino acids were hydrophilic, and almost all of the C-terminal region amino acids were hydrophilic, indicating that PeCRY1 is a hydrophilic protein (Fig. 3A). In addition, two PeCRY1 transmembrane domains with scores above 1.8 were also predicted using the Kyte and Doolittle method (Fig. 3A). To confirm this result, we examined the PeCRY1 transmembrane domains using DNAman software, which identified two possible transmembrane domains in PeCRY1, the first located at amino acids 23–40 and the second at amino acids 351–369 (Fig. 3B), in agreement with the results obtained using the Kyte and Doolittle method.

Bottom Line: Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype.In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light.Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc) assay.

View Article: PubMed Central - PubMed

Affiliation: Center for Computational Biology, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.

ABSTRACT
Cryptochromes are photolyase-like blue/UV-A light receptors that evolved from photolyases. In plants, cryptochromes regulate various aspects of plant growth and development. Despite of their involvement in the control of important plant traits, however, most studies on cryptochromes have focused on lower plants and herbaceous crops, and no data on cryptochrome function are available for forest trees. In this study, we isolated a cryptochrome gene, PeCRY1, from Euphrates poplar (Populus euphratica), and analyzed its structure and function in detail. The deduced PeCRY1 amino acid sequence contained a conserved N-terminal photolyase-homologous region (PHR) domain as well as a C-terminal DQXVP-acidic-STAES (DAS) domain. Secondary and tertiary structure analysis showed that PeCRY1 shares high similarity with AtCRY1 from Arabidopsis thaliana. PeCRY1 expression was upregulated at the mRNA level by light. Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype. In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light. Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc) assay. Our data provide evidence for the involvement of PeCRY1 in the control of photomorphogenesis in poplar.

No MeSH data available.