Limits...
Visiting Richard Serra's "Promenade" sculpture improves postural control and judgment of subjective visual vertical.

Kapoula Z, Lang A, Lê TT, Adenis MS, Yang Q, Lipede G, Vernet M - Front Psychol (2014)

Bottom Line: Moreover, a medio-lateral instability associated with eye movement exploration before the promenade (in terms of body sway sensu stricto) was canceled after the promenade.Finally, the overall medio-lateral stability (in terms of spectral power) increased after the promenade.We attribute these effects to the sculpted environment provided by the exhibition which may have acted as a kind of physiologic "training ground" thereby improving the visitors' overall sense of visual perspective, equilibrium, and gravity.

View Article: PubMed Central - PubMed

Affiliation: IRIS Team, Physiopathologie de la Vision et Motricité Binoculaire, CNRS FR3636, UFR Biomédicale, Université Paris Descartes , Paris, France.

ABSTRACT
Body sway while maintaining an upright quiet stance reflects an active process of balance based on the integration of visual, vestibular, somatosensory, and proprioceptive inputs. Richard Serra's Promenade sculpture featured in the 2008 Monumenta exhibition at the Grand Palais in Paris, France is herein hypothesized to have stimulated the body's vertical and longitudinal axes as it showcased five monumental rectangular solids pitched at a 1.69(°) angle. Using computerized dynamic posturography we measured the body sway of 23 visitors when fixating a cross, or when observing the artwork (fixating it or actively exploring it with eye movements) before and after walking around and alongside the sculpture (i.e., before and after a promenade). A first fixation at the sculpture increased medio-lateral stability (in terms of spectral power of body sway). Eye movement exploration in the depth of the sculpture increased antero-posterior stability [in terms of spectral power and canceling time (CT) of body sway] at the expense of medio-lateral stability (in terms of CT). Moreover, a medio-lateral instability associated with eye movement exploration before the promenade (in terms of body sway sensu stricto) was canceled after the promenade. Finally, the overall medio-lateral stability (in terms of spectral power) increased after the promenade. Fourteen additional visitors were asked to stand in a dark room and adjust a luminous line to what they considered to be the earth-vertical axis. The promenade executed within the sculpted environment afforded by Serra's monumental statuary works resulted in significantly improved performances on the subjective visual vertical test. We attribute these effects to the sculpted environment provided by the exhibition which may have acted as a kind of physiologic "training ground" thereby improving the visitors' overall sense of visual perspective, equilibrium, and gravity.

No MeSH data available.


Related in: MedlinePlus

Significant results of the Experiment 1. Group mean and standard deviation. Legend: Basic condition: condition 1. First glance: condition 2. Pre: pre-promenade (conditions 2 and 3). Post: post-promenade (conditions 4 and 5). Fixation: fixating the sculpture (conditions 2 and 4). Exploration: eye navigation in depth along the sculpture’s transverse plan (conditions 3 and 5). F1: 0.05–0.5 Hz. F2: 0.5–1.5 Hz. F3: >1.5 Hz. The symbol * indicates significant p values. (A) Compared to the basic condition, fixating the sculpture significantly decreased the spectral power of medio-lateral sway (Px) for F2 and F3. (B) Navigating with eye movements along the sculpture significantly decreased the spectral power index of antero-posterior sway (Py) for F1 and F3. (C) Navigating with eye movements significantly increased the canceling time of antero-posterior sway (CTy) for F1. (D) Navigating with eye movements significantly decreased the canceling time of medio-lateral sway (CTx) for F2. (E) The promenade significantly decreased the spectral power of medio-lateral sway (Px) for all frequency bands, F1, F2, and F3. (F) Before the promenade, navigating with eye movements significantly increased the standard deviation of medio-lateral body sway (SDx); this was no longer the case after the promenade.(G) Before the promenade, navigating with eye movements tended to increase the surface of the CoP excursions (Surface); this was no longer the case after the promenade.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4264406&req=5

Figure 2: Significant results of the Experiment 1. Group mean and standard deviation. Legend: Basic condition: condition 1. First glance: condition 2. Pre: pre-promenade (conditions 2 and 3). Post: post-promenade (conditions 4 and 5). Fixation: fixating the sculpture (conditions 2 and 4). Exploration: eye navigation in depth along the sculpture’s transverse plan (conditions 3 and 5). F1: 0.05–0.5 Hz. F2: 0.5–1.5 Hz. F3: >1.5 Hz. The symbol * indicates significant p values. (A) Compared to the basic condition, fixating the sculpture significantly decreased the spectral power of medio-lateral sway (Px) for F2 and F3. (B) Navigating with eye movements along the sculpture significantly decreased the spectral power index of antero-posterior sway (Py) for F1 and F3. (C) Navigating with eye movements significantly increased the canceling time of antero-posterior sway (CTy) for F1. (D) Navigating with eye movements significantly decreased the canceling time of medio-lateral sway (CTx) for F2. (E) The promenade significantly decreased the spectral power of medio-lateral sway (Px) for all frequency bands, F1, F2, and F3. (F) Before the promenade, navigating with eye movements significantly increased the standard deviation of medio-lateral body sway (SDx); this was no longer the case after the promenade.(G) Before the promenade, navigating with eye movements tended to increase the surface of the CoP excursions (Surface); this was no longer the case after the promenade.

Mentions: The one-way ANOVAs revealed that the SCULPTURE factor significantly decreased Px for F2 [F(1,20) = 6.7; p < 0.02] and F3 [F(1,20) = 5.0; p < 0.04; Figure 2A]. Thus, compared to the basic condition, a first glance of the laterally tilted sculptures caused a decrease in the power of the medio-lateral body sway. This is a subtle but significant, medio-lateral axis-specific, immediate effect.


Visiting Richard Serra's "Promenade" sculpture improves postural control and judgment of subjective visual vertical.

Kapoula Z, Lang A, Lê TT, Adenis MS, Yang Q, Lipede G, Vernet M - Front Psychol (2014)

Significant results of the Experiment 1. Group mean and standard deviation. Legend: Basic condition: condition 1. First glance: condition 2. Pre: pre-promenade (conditions 2 and 3). Post: post-promenade (conditions 4 and 5). Fixation: fixating the sculpture (conditions 2 and 4). Exploration: eye navigation in depth along the sculpture’s transverse plan (conditions 3 and 5). F1: 0.05–0.5 Hz. F2: 0.5–1.5 Hz. F3: >1.5 Hz. The symbol * indicates significant p values. (A) Compared to the basic condition, fixating the sculpture significantly decreased the spectral power of medio-lateral sway (Px) for F2 and F3. (B) Navigating with eye movements along the sculpture significantly decreased the spectral power index of antero-posterior sway (Py) for F1 and F3. (C) Navigating with eye movements significantly increased the canceling time of antero-posterior sway (CTy) for F1. (D) Navigating with eye movements significantly decreased the canceling time of medio-lateral sway (CTx) for F2. (E) The promenade significantly decreased the spectral power of medio-lateral sway (Px) for all frequency bands, F1, F2, and F3. (F) Before the promenade, navigating with eye movements significantly increased the standard deviation of medio-lateral body sway (SDx); this was no longer the case after the promenade.(G) Before the promenade, navigating with eye movements tended to increase the surface of the CoP excursions (Surface); this was no longer the case after the promenade.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4264406&req=5

Figure 2: Significant results of the Experiment 1. Group mean and standard deviation. Legend: Basic condition: condition 1. First glance: condition 2. Pre: pre-promenade (conditions 2 and 3). Post: post-promenade (conditions 4 and 5). Fixation: fixating the sculpture (conditions 2 and 4). Exploration: eye navigation in depth along the sculpture’s transverse plan (conditions 3 and 5). F1: 0.05–0.5 Hz. F2: 0.5–1.5 Hz. F3: >1.5 Hz. The symbol * indicates significant p values. (A) Compared to the basic condition, fixating the sculpture significantly decreased the spectral power of medio-lateral sway (Px) for F2 and F3. (B) Navigating with eye movements along the sculpture significantly decreased the spectral power index of antero-posterior sway (Py) for F1 and F3. (C) Navigating with eye movements significantly increased the canceling time of antero-posterior sway (CTy) for F1. (D) Navigating with eye movements significantly decreased the canceling time of medio-lateral sway (CTx) for F2. (E) The promenade significantly decreased the spectral power of medio-lateral sway (Px) for all frequency bands, F1, F2, and F3. (F) Before the promenade, navigating with eye movements significantly increased the standard deviation of medio-lateral body sway (SDx); this was no longer the case after the promenade.(G) Before the promenade, navigating with eye movements tended to increase the surface of the CoP excursions (Surface); this was no longer the case after the promenade.
Mentions: The one-way ANOVAs revealed that the SCULPTURE factor significantly decreased Px for F2 [F(1,20) = 6.7; p < 0.02] and F3 [F(1,20) = 5.0; p < 0.04; Figure 2A]. Thus, compared to the basic condition, a first glance of the laterally tilted sculptures caused a decrease in the power of the medio-lateral body sway. This is a subtle but significant, medio-lateral axis-specific, immediate effect.

Bottom Line: Moreover, a medio-lateral instability associated with eye movement exploration before the promenade (in terms of body sway sensu stricto) was canceled after the promenade.Finally, the overall medio-lateral stability (in terms of spectral power) increased after the promenade.We attribute these effects to the sculpted environment provided by the exhibition which may have acted as a kind of physiologic "training ground" thereby improving the visitors' overall sense of visual perspective, equilibrium, and gravity.

View Article: PubMed Central - PubMed

Affiliation: IRIS Team, Physiopathologie de la Vision et Motricité Binoculaire, CNRS FR3636, UFR Biomédicale, Université Paris Descartes , Paris, France.

ABSTRACT
Body sway while maintaining an upright quiet stance reflects an active process of balance based on the integration of visual, vestibular, somatosensory, and proprioceptive inputs. Richard Serra's Promenade sculpture featured in the 2008 Monumenta exhibition at the Grand Palais in Paris, France is herein hypothesized to have stimulated the body's vertical and longitudinal axes as it showcased five monumental rectangular solids pitched at a 1.69(°) angle. Using computerized dynamic posturography we measured the body sway of 23 visitors when fixating a cross, or when observing the artwork (fixating it or actively exploring it with eye movements) before and after walking around and alongside the sculpture (i.e., before and after a promenade). A first fixation at the sculpture increased medio-lateral stability (in terms of spectral power of body sway). Eye movement exploration in the depth of the sculpture increased antero-posterior stability [in terms of spectral power and canceling time (CT) of body sway] at the expense of medio-lateral stability (in terms of CT). Moreover, a medio-lateral instability associated with eye movement exploration before the promenade (in terms of body sway sensu stricto) was canceled after the promenade. Finally, the overall medio-lateral stability (in terms of spectral power) increased after the promenade. Fourteen additional visitors were asked to stand in a dark room and adjust a luminous line to what they considered to be the earth-vertical axis. The promenade executed within the sculpted environment afforded by Serra's monumental statuary works resulted in significantly improved performances on the subjective visual vertical test. We attribute these effects to the sculpted environment provided by the exhibition which may have acted as a kind of physiologic "training ground" thereby improving the visitors' overall sense of visual perspective, equilibrium, and gravity.

No MeSH data available.


Related in: MedlinePlus