Limits...
Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission.

Barasona JA, Latham MC, Acevedo P, Armenteros JA, Latham AD, Gortazar C, Carro F, Soriguer RC, Vicente J - Vet. Res. (2014)

Bottom Line: We found that fine-scale spatial overlap of cattle and wild boar was seasonally high in some habitats.Conversely, limited differences in resource selection during summer and autumn, when food and water availability were limiting, resulted in negligible spatial segregation and thus probably high encounter rates.Targeted management actions are suggested to reduce potential interactions between cattle and wild boar in order to prevent disease transmission and design effective control strategies.

View Article: PubMed Central - PubMed

Affiliation: SaBio (Health and Biotechnology), IREC, National Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain. joseangel.barasona@uclm.es.

ABSTRACT
Controlling infectious diseases at the wildlife/livestock interface is often difficult because the ecological processes driving transmission between wildlife reservoirs and sympatric livestock populations are poorly understood. Thus, assessing how animals use their environment and how this affects interspecific interactions is an important factor in determining the local risk for disease transmission and maintenance. We used data from concurrently monitored GPS-collared domestic cattle and wild boar (Sus scrofa) to assess spatiotemporal interactions and associated implications for bovine tuberculosis (TB) transmission in a complex ecological and epidemiological system, Doñana National Park (DNP, South Spain). We found that fine-scale spatial overlap of cattle and wild boar was seasonally high in some habitats. In general, spatial interactions between the two species were highest in the marsh-shrub ecotone and at permanent water sources, whereas shrub-woodlands and seasonal grass-marshlands were areas with lower predicted relative interactions. Wild boar and cattle generally used different resources during winter and spring in DNP. Conversely, limited differences in resource selection during summer and autumn, when food and water availability were limiting, resulted in negligible spatial segregation and thus probably high encounter rates. The spatial gradient in potential overlap between the two species across DNP corresponded well with the spatial variation in the observed incidence of TB in cattle and prevalence of TB in wild boar. We suggest that the marsh-shrub ecotone and permanent water sources act as important points of TB transmission in our system, particularly during summer and autumn. Targeted management actions are suggested to reduce potential interactions between cattle and wild boar in order to prevent disease transmission and design effective control strategies.

Show MeSH

Related in: MedlinePlus

Comparison of mean annual domestic cattle and wild boar home ranges. Home range sizes (ha) derived using fixed-kernel density estimators for 95% utilization distribution (UD) and 50% UD. Kernels were estimated using data from 12 cattle and 18 wild boar GPS-collared between July 2011 and October 2013 in Doñana National Park, Spain. Error bars indicate SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4264384&req=5

Fig2: Comparison of mean annual domestic cattle and wild boar home ranges. Home range sizes (ha) derived using fixed-kernel density estimators for 95% utilization distribution (UD) and 50% UD. Kernels were estimated using data from 12 cattle and 18 wild boar GPS-collared between July 2011 and October 2013 in Doñana National Park, Spain. Error bars indicate SE.

Mentions: There was a stark contrast between estimated annual HR and CA sizes for cattle and wild boar (Figure 2), with cattle using significantly larger areas (average ± SE, HR = 1787.78 ± 826 ha; CA = 346.24 ± 174 ha) than wild boar (HR = 551.33 ± 260 ha; CA = 86 ± 77 ha), (ANOVA, F1, 28 = 16.57 for HR; F1, 28 = 15.21 for CA; both p < 0.001). There were significant seasonal differences in HR sizes for cattle (F3, 8 = 3.69, p = 0.023), but not for wild boar (F3, 14 = 2.47, p > 0.05) (Figure 3). The percent overlap in HR and CA between cattle and wild boar varied among seasons, with percent overlap being highest in autumn and lowest in winter (Table 1). Overall, > 60% of wild boar HR overlapped areas used by cattle, whereas ≤ 40% of the HR of cattle overlapped areas used by wild boar. Wild boar CA showed high overlap with areas used by cattle in spring, summer and autumn (66–78% overlap) but not in winter (only 23%).Figure 2


Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission.

Barasona JA, Latham MC, Acevedo P, Armenteros JA, Latham AD, Gortazar C, Carro F, Soriguer RC, Vicente J - Vet. Res. (2014)

Comparison of mean annual domestic cattle and wild boar home ranges. Home range sizes (ha) derived using fixed-kernel density estimators for 95% utilization distribution (UD) and 50% UD. Kernels were estimated using data from 12 cattle and 18 wild boar GPS-collared between July 2011 and October 2013 in Doñana National Park, Spain. Error bars indicate SE.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4264384&req=5

Fig2: Comparison of mean annual domestic cattle and wild boar home ranges. Home range sizes (ha) derived using fixed-kernel density estimators for 95% utilization distribution (UD) and 50% UD. Kernels were estimated using data from 12 cattle and 18 wild boar GPS-collared between July 2011 and October 2013 in Doñana National Park, Spain. Error bars indicate SE.
Mentions: There was a stark contrast between estimated annual HR and CA sizes for cattle and wild boar (Figure 2), with cattle using significantly larger areas (average ± SE, HR = 1787.78 ± 826 ha; CA = 346.24 ± 174 ha) than wild boar (HR = 551.33 ± 260 ha; CA = 86 ± 77 ha), (ANOVA, F1, 28 = 16.57 for HR; F1, 28 = 15.21 for CA; both p < 0.001). There were significant seasonal differences in HR sizes for cattle (F3, 8 = 3.69, p = 0.023), but not for wild boar (F3, 14 = 2.47, p > 0.05) (Figure 3). The percent overlap in HR and CA between cattle and wild boar varied among seasons, with percent overlap being highest in autumn and lowest in winter (Table 1). Overall, > 60% of wild boar HR overlapped areas used by cattle, whereas ≤ 40% of the HR of cattle overlapped areas used by wild boar. Wild boar CA showed high overlap with areas used by cattle in spring, summer and autumn (66–78% overlap) but not in winter (only 23%).Figure 2

Bottom Line: We found that fine-scale spatial overlap of cattle and wild boar was seasonally high in some habitats.Conversely, limited differences in resource selection during summer and autumn, when food and water availability were limiting, resulted in negligible spatial segregation and thus probably high encounter rates.Targeted management actions are suggested to reduce potential interactions between cattle and wild boar in order to prevent disease transmission and design effective control strategies.

View Article: PubMed Central - PubMed

Affiliation: SaBio (Health and Biotechnology), IREC, National Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain. joseangel.barasona@uclm.es.

ABSTRACT
Controlling infectious diseases at the wildlife/livestock interface is often difficult because the ecological processes driving transmission between wildlife reservoirs and sympatric livestock populations are poorly understood. Thus, assessing how animals use their environment and how this affects interspecific interactions is an important factor in determining the local risk for disease transmission and maintenance. We used data from concurrently monitored GPS-collared domestic cattle and wild boar (Sus scrofa) to assess spatiotemporal interactions and associated implications for bovine tuberculosis (TB) transmission in a complex ecological and epidemiological system, Doñana National Park (DNP, South Spain). We found that fine-scale spatial overlap of cattle and wild boar was seasonally high in some habitats. In general, spatial interactions between the two species were highest in the marsh-shrub ecotone and at permanent water sources, whereas shrub-woodlands and seasonal grass-marshlands were areas with lower predicted relative interactions. Wild boar and cattle generally used different resources during winter and spring in DNP. Conversely, limited differences in resource selection during summer and autumn, when food and water availability were limiting, resulted in negligible spatial segregation and thus probably high encounter rates. The spatial gradient in potential overlap between the two species across DNP corresponded well with the spatial variation in the observed incidence of TB in cattle and prevalence of TB in wild boar. We suggest that the marsh-shrub ecotone and permanent water sources act as important points of TB transmission in our system, particularly during summer and autumn. Targeted management actions are suggested to reduce potential interactions between cattle and wild boar in order to prevent disease transmission and design effective control strategies.

Show MeSH
Related in: MedlinePlus