Limits...
Review of transducer principles for label-free biomolecular interaction analysis.

Nirschl M, Reuter F, Vörös J - Biosensors (Basel) (2011)

Bottom Line: Starting from optical technologies like the SPR and waveguide based sensors, acoustic sensors like the quartz crystal microbalance (QCM) and the film bulk acoustic resonator (FBAR), calorimetric and electrochemical sensors are covered.Technologies long established in the market are presented together with those newly commercially available and with technologies in the early development stage.Finally, the commercially available instruments are summarized together with their sensitivity and the number of sensors usable in parallel and an outlook for potential future developments is given.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Switzerland. nirschlm@ethz.ch.

ABSTRACT
Label-free biomolecular interaction analysis is an important technique to study the chemical binding between e.g., protein and protein or protein and small molecule in real-time. The parameters obtained with this technique, such as the affinity, are important for drug development. While the surface plasmon resonance (SPR) instruments are most widely used, new types of sensors are emerging. These developments are generally driven by the need for higher throughput, lower sample consumption or by the need of complimentary information to the SPR data. This review aims to give an overview about a wide range of sensor transducers, the working principles and the peculiarities of each technology, e.g., concerning the set-up, sensitivity, sensor size or required sample volume. Starting from optical technologies like the SPR and waveguide based sensors, acoustic sensors like the quartz crystal microbalance (QCM) and the film bulk acoustic resonator (FBAR), calorimetric and electrochemical sensors are covered. Technologies long established in the market are presented together with those newly commercially available and with technologies in the early development stage. Finally, the commercially available instruments are summarized together with their sensitivity and the number of sensors usable in parallel and an outlook for potential future developments is given.

No MeSH data available.


Working principle of Optical waveguide lightmode spectroscopy (OWLS): (a) Light is coupled into an optical waveguide via an optical grating and the intensity is measured as a function of the incident angle. From the two peaks in the intensity spectrum (incoupling angles) (b), the thickness and the refractive index of the adsorbed layer can be calculated. (Reproduced from [76] with permission from Elsevier).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4264362&req=5

biosensors-01-00070-f008: Working principle of Optical waveguide lightmode spectroscopy (OWLS): (a) Light is coupled into an optical waveguide via an optical grating and the intensity is measured as a function of the incident angle. From the two peaks in the intensity spectrum (incoupling angles) (b), the thickness and the refractive index of the adsorbed layer can be calculated. (Reproduced from [76] with permission from Elsevier).

Mentions: There are a range of different optical-waveguide-based biosensors that differ in the way the light is coupled into the waveguide and the way the coupled light is detected: The light can be coupled into the waveguide using an optical grating, or by putting the light source directly in line with the wave guide. Also the coupled light can be guided to the detector using a grating or directly. As an example, with Optical Waveguide Lightmode Spectroscopy (OWLS) the light is coupled into the waveguide using a grating and is detected directly (Figure 8). A comprehensive review about theory, methods and applications can be found in [5].


Review of transducer principles for label-free biomolecular interaction analysis.

Nirschl M, Reuter F, Vörös J - Biosensors (Basel) (2011)

Working principle of Optical waveguide lightmode spectroscopy (OWLS): (a) Light is coupled into an optical waveguide via an optical grating and the intensity is measured as a function of the incident angle. From the two peaks in the intensity spectrum (incoupling angles) (b), the thickness and the refractive index of the adsorbed layer can be calculated. (Reproduced from [76] with permission from Elsevier).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4264362&req=5

biosensors-01-00070-f008: Working principle of Optical waveguide lightmode spectroscopy (OWLS): (a) Light is coupled into an optical waveguide via an optical grating and the intensity is measured as a function of the incident angle. From the two peaks in the intensity spectrum (incoupling angles) (b), the thickness and the refractive index of the adsorbed layer can be calculated. (Reproduced from [76] with permission from Elsevier).
Mentions: There are a range of different optical-waveguide-based biosensors that differ in the way the light is coupled into the waveguide and the way the coupled light is detected: The light can be coupled into the waveguide using an optical grating, or by putting the light source directly in line with the wave guide. Also the coupled light can be guided to the detector using a grating or directly. As an example, with Optical Waveguide Lightmode Spectroscopy (OWLS) the light is coupled into the waveguide using a grating and is detected directly (Figure 8). A comprehensive review about theory, methods and applications can be found in [5].

Bottom Line: Starting from optical technologies like the SPR and waveguide based sensors, acoustic sensors like the quartz crystal microbalance (QCM) and the film bulk acoustic resonator (FBAR), calorimetric and electrochemical sensors are covered.Technologies long established in the market are presented together with those newly commercially available and with technologies in the early development stage.Finally, the commercially available instruments are summarized together with their sensitivity and the number of sensors usable in parallel and an outlook for potential future developments is given.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Switzerland. nirschlm@ethz.ch.

ABSTRACT
Label-free biomolecular interaction analysis is an important technique to study the chemical binding between e.g., protein and protein or protein and small molecule in real-time. The parameters obtained with this technique, such as the affinity, are important for drug development. While the surface plasmon resonance (SPR) instruments are most widely used, new types of sensors are emerging. These developments are generally driven by the need for higher throughput, lower sample consumption or by the need of complimentary information to the SPR data. This review aims to give an overview about a wide range of sensor transducers, the working principles and the peculiarities of each technology, e.g., concerning the set-up, sensitivity, sensor size or required sample volume. Starting from optical technologies like the SPR and waveguide based sensors, acoustic sensors like the quartz crystal microbalance (QCM) and the film bulk acoustic resonator (FBAR), calorimetric and electrochemical sensors are covered. Technologies long established in the market are presented together with those newly commercially available and with technologies in the early development stage. Finally, the commercially available instruments are summarized together with their sensitivity and the number of sensors usable in parallel and an outlook for potential future developments is given.

No MeSH data available.