Limits...
ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin.

Ibupoto ZH, Ali SM, Khun K, Chey CO, Nur O, Willander M - Biosensors (Basel) (2011)

Bottom Line: In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method.During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin.A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed.

View Article: PubMed Central - PubMed

Affiliation: Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping SE-60174, Sweden. zafar.hussain.ibupoto@liu.se.

ABSTRACT
In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method. The ZnO nanorods were immobilized with penicillinase enzyme using the physical adsorption approach in combination with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) as cross linking molecules. The potentiometric response of the sensor configuration revealed good linearity over a large logarithmic concentration range from 100 µM to 100 mM. During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin. A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed.

No MeSH data available.


Calibration curves showing the investigation of EMF response with the change in temperature.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4264348&req=5

biosensors-01-00153-f005: Calibration curves showing the investigation of EMF response with the change in temperature.

Mentions: The morphology of the ZnO nanorods right after the measurements was checked with FESEM and it has been observed that the ZnO nanorods were intact with electrode surface. It was only observed that the ZnO nanorods were slightly dissolved from the tip due to minor change in the pH of the analyte test solution as shown in Figure 1(c). The effect of temperature on the performance of the sensor response was also studied by varying the temperature from 20 °C to 80 °C. The results are shown in Figure 5. During the experiments, a trend of gradual increase in the EMF response of sensor electrode with increasing temperature was observed, and it reached its maximum value at around 50 °C. This is due to the fact that the enzyme has its maximum activity at 50 °C and above 50 °C there was a sudden decrease in the EMF response of the sensor due to the heating effect on the immobilized enzyme, which degraded the enzyme functionality. However, the sensor showed maximum response at 50 °C but it was not as stable as at room temperature. Thus, we have chosen to work at room temperature 23 ± 2 °C for the ease of practical measurements and also to avoid evaporation of the solution.


ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin.

Ibupoto ZH, Ali SM, Khun K, Chey CO, Nur O, Willander M - Biosensors (Basel) (2011)

Calibration curves showing the investigation of EMF response with the change in temperature.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4264348&req=5

biosensors-01-00153-f005: Calibration curves showing the investigation of EMF response with the change in temperature.
Mentions: The morphology of the ZnO nanorods right after the measurements was checked with FESEM and it has been observed that the ZnO nanorods were intact with electrode surface. It was only observed that the ZnO nanorods were slightly dissolved from the tip due to minor change in the pH of the analyte test solution as shown in Figure 1(c). The effect of temperature on the performance of the sensor response was also studied by varying the temperature from 20 °C to 80 °C. The results are shown in Figure 5. During the experiments, a trend of gradual increase in the EMF response of sensor electrode with increasing temperature was observed, and it reached its maximum value at around 50 °C. This is due to the fact that the enzyme has its maximum activity at 50 °C and above 50 °C there was a sudden decrease in the EMF response of the sensor due to the heating effect on the immobilized enzyme, which degraded the enzyme functionality. However, the sensor showed maximum response at 50 °C but it was not as stable as at room temperature. Thus, we have chosen to work at room temperature 23 ± 2 °C for the ease of practical measurements and also to avoid evaporation of the solution.

Bottom Line: In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method.During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin.A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed.

View Article: PubMed Central - PubMed

Affiliation: Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping SE-60174, Sweden. zafar.hussain.ibupoto@liu.se.

ABSTRACT
In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method. The ZnO nanorods were immobilized with penicillinase enzyme using the physical adsorption approach in combination with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) as cross linking molecules. The potentiometric response of the sensor configuration revealed good linearity over a large logarithmic concentration range from 100 µM to 100 mM. During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin. A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed.

No MeSH data available.