Limits...
MicroRNA miR-320a and miR-140 inhibit mink enteritis virus infection by repression of its receptor, feline transferrin receptor.

Sun JZ, Wang J, Wang S, Yuan D, Li Z, Yi B, Hou Q, Mao Y, Liu W - Virol. J. (2014)

Bottom Line: Recent studies have shed light into the role of microRNAs (miRNAs), small noncoding RNAs of length ranging from 18-23 nucleotides (nt), as critical modulators in the host-pathogen interaction networks.We previously showed that miRNA miR-181b can inhibit MEV replication by repression of viral non-structural protein 1 expression.Here, we report that two other miRNAs (miR-320a and miR-140) inhibit MEV entry into feline kidney (F81) cells by downregulating its receptor, transferrin receptor (TfR), by targeting the 3' untranslated region (UTR) of TfR mRNA, while being themselves upregulated.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China. sunjiazeng331@163.com.

ABSTRACT
Mink enteritis virus (MEV) is one of the most important pathogens in the mink industry. Recent studies have shed light into the role of microRNAs (miRNAs), small noncoding RNAs of length ranging from 18-23 nucleotides (nt), as critical modulators in the host-pathogen interaction networks. We previously showed that miRNA miR-181b can inhibit MEV replication by repression of viral non-structural protein 1 expression. Here, we report that two other miRNAs (miR-320a and miR-140) inhibit MEV entry into feline kidney (F81) cells by downregulating its receptor, transferrin receptor (TfR), by targeting the 3' untranslated region (UTR) of TfR mRNA, while being themselves upregulated.

Show MeSH

Related in: MedlinePlus

MiR-320a and miR-140 inhibit MEV infection by preventing the virus to entry into F81 cells. (A) qPCR was used to assess the effects of miR-320a and miR-140 mimics of MEV genomic DNA at the indicated times after 48 h transfection with the mimics. Data are from 3 independent experiments (mean ± SD). Statistical significance was analyzed by two-way ANOVA test; *P <0.05; **P <0.01; ***P <0.001. (B,C,D,E) Flow cytometric analysis was used to assess the effects of miR-320a and miR-140 mimics on MEV-infected F81 cells at the indicated times after 48 h transfection with the mimics. The mean fluorescence intensities (MFI) of MEV-infected F81 cells at the indicated times are shown. Data are from 3 independent experiments (mean ± SD). Statistical significance was analyzed by Student’s t test; *P <0.05; **P <0.01; ***P <0.001.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4264318&req=5

Fig5: MiR-320a and miR-140 inhibit MEV infection by preventing the virus to entry into F81 cells. (A) qPCR was used to assess the effects of miR-320a and miR-140 mimics of MEV genomic DNA at the indicated times after 48 h transfection with the mimics. Data are from 3 independent experiments (mean ± SD). Statistical significance was analyzed by two-way ANOVA test; *P <0.05; **P <0.01; ***P <0.001. (B,C,D,E) Flow cytometric analysis was used to assess the effects of miR-320a and miR-140 mimics on MEV-infected F81 cells at the indicated times after 48 h transfection with the mimics. The mean fluorescence intensities (MFI) of MEV-infected F81 cells at the indicated times are shown. Data are from 3 independent experiments (mean ± SD). Statistical significance was analyzed by Student’s t test; *P <0.05; **P <0.01; ***P <0.001.

Mentions: Since miR-320a and miR-140 downregulated TfR expression, we speculated that the two miRNAs could control MEV infection by preventing the virus from entering cells. To investigate this, F81 cells were transfected with either miR-320a and miR-140 mimics, with NC mimics as controls. After 48 h transfection, the cells were infected with MEV (MOI = 0.1). At the indicated times, the quantity of viral genomic DNA was measured. As predicted, results showed that miR-320a and miR-140 downregulated the quantity of viral genomic DNA in F81 cells, even during the early stage of virus infection (Figure 5A). To further validate the results above, flow cytometry was used to determine the proportion of MEV-infected cells. Results showed that compared with transfection with NC mimics, both miRNAs mimics had a negative effect on MEV-infected cell numbers from quite early on (Figure 5B,C,D,E). These results clearly demonstrated that miR-320a and miR-140 inhibit MEV infection by preventing virus entry into the cells.Figure 5


MicroRNA miR-320a and miR-140 inhibit mink enteritis virus infection by repression of its receptor, feline transferrin receptor.

Sun JZ, Wang J, Wang S, Yuan D, Li Z, Yi B, Hou Q, Mao Y, Liu W - Virol. J. (2014)

MiR-320a and miR-140 inhibit MEV infection by preventing the virus to entry into F81 cells. (A) qPCR was used to assess the effects of miR-320a and miR-140 mimics of MEV genomic DNA at the indicated times after 48 h transfection with the mimics. Data are from 3 independent experiments (mean ± SD). Statistical significance was analyzed by two-way ANOVA test; *P <0.05; **P <0.01; ***P <0.001. (B,C,D,E) Flow cytometric analysis was used to assess the effects of miR-320a and miR-140 mimics on MEV-infected F81 cells at the indicated times after 48 h transfection with the mimics. The mean fluorescence intensities (MFI) of MEV-infected F81 cells at the indicated times are shown. Data are from 3 independent experiments (mean ± SD). Statistical significance was analyzed by Student’s t test; *P <0.05; **P <0.01; ***P <0.001.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4264318&req=5

Fig5: MiR-320a and miR-140 inhibit MEV infection by preventing the virus to entry into F81 cells. (A) qPCR was used to assess the effects of miR-320a and miR-140 mimics of MEV genomic DNA at the indicated times after 48 h transfection with the mimics. Data are from 3 independent experiments (mean ± SD). Statistical significance was analyzed by two-way ANOVA test; *P <0.05; **P <0.01; ***P <0.001. (B,C,D,E) Flow cytometric analysis was used to assess the effects of miR-320a and miR-140 mimics on MEV-infected F81 cells at the indicated times after 48 h transfection with the mimics. The mean fluorescence intensities (MFI) of MEV-infected F81 cells at the indicated times are shown. Data are from 3 independent experiments (mean ± SD). Statistical significance was analyzed by Student’s t test; *P <0.05; **P <0.01; ***P <0.001.
Mentions: Since miR-320a and miR-140 downregulated TfR expression, we speculated that the two miRNAs could control MEV infection by preventing the virus from entering cells. To investigate this, F81 cells were transfected with either miR-320a and miR-140 mimics, with NC mimics as controls. After 48 h transfection, the cells were infected with MEV (MOI = 0.1). At the indicated times, the quantity of viral genomic DNA was measured. As predicted, results showed that miR-320a and miR-140 downregulated the quantity of viral genomic DNA in F81 cells, even during the early stage of virus infection (Figure 5A). To further validate the results above, flow cytometry was used to determine the proportion of MEV-infected cells. Results showed that compared with transfection with NC mimics, both miRNAs mimics had a negative effect on MEV-infected cell numbers from quite early on (Figure 5B,C,D,E). These results clearly demonstrated that miR-320a and miR-140 inhibit MEV infection by preventing virus entry into the cells.Figure 5

Bottom Line: Recent studies have shed light into the role of microRNAs (miRNAs), small noncoding RNAs of length ranging from 18-23 nucleotides (nt), as critical modulators in the host-pathogen interaction networks.We previously showed that miRNA miR-181b can inhibit MEV replication by repression of viral non-structural protein 1 expression.Here, we report that two other miRNAs (miR-320a and miR-140) inhibit MEV entry into feline kidney (F81) cells by downregulating its receptor, transferrin receptor (TfR), by targeting the 3' untranslated region (UTR) of TfR mRNA, while being themselves upregulated.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China. sunjiazeng331@163.com.

ABSTRACT
Mink enteritis virus (MEV) is one of the most important pathogens in the mink industry. Recent studies have shed light into the role of microRNAs (miRNAs), small noncoding RNAs of length ranging from 18-23 nucleotides (nt), as critical modulators in the host-pathogen interaction networks. We previously showed that miRNA miR-181b can inhibit MEV replication by repression of viral non-structural protein 1 expression. Here, we report that two other miRNAs (miR-320a and miR-140) inhibit MEV entry into feline kidney (F81) cells by downregulating its receptor, transferrin receptor (TfR), by targeting the 3' untranslated region (UTR) of TfR mRNA, while being themselves upregulated.

Show MeSH
Related in: MedlinePlus