Limits...
Biomimetic strategies for sensing biological species.

Hussain M, Wackerlig J, Lieberzeit PA - Biosensors (Basel) (2013)

Bottom Line: A different strategy comprises of devising polymer coatings to change the biocompatibility of surfaces that can also be used to immobilized natural receptors/ligands and thus stabilize them.Rationally speaking, this leads to self-assembled monolayers closely resembling cell membranes, sometimes also including bioreceptors.It mainly focuses on the literature published since 2005.

View Article: PubMed Central - PubMed

Affiliation: Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria; E-Mails: munawar_arif@hotmail.com (M.H.); judith.maehner@univie.ac.at (J.W.).

ABSTRACT
The starting point of modern biosensing was the application of actual biological species for recognition. Increasing understanding of the principles underlying such recognition (and biofunctionality in general), however, has triggered a dynamic field in chemistry and materials sciences that aims at joining the best of two worlds by combining concepts derived from nature with the processability of manmade materials, e.g., sensitivity and ruggedness. This review covers different biomimetic strategies leading to highly selective (bio)chemical sensors: the first section covers molecularly imprinted polymers (MIP) that attempt to generate a fully artificial, macromolecular mold of a species in order to detect it selectively. A different strategy comprises of devising polymer coatings to change the biocompatibility of surfaces that can also be used to immobilized natural receptors/ligands and thus stabilize them. Rationally speaking, this leads to self-assembled monolayers closely resembling cell membranes, sometimes also including bioreceptors. Finally, this review will highlight some approaches to generate artificial analogs of natural recognition materials and biomimetic approaches in nanotechnology. It mainly focuses on the literature published since 2005.

No MeSH data available.


Schematic representation of lipid bilayers used for protein binding. Reprinted with permission from [45], © 2011 American Chemical Society.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263596&req=5

biosensors-03-00089-f006: Schematic representation of lipid bilayers used for protein binding. Reprinted with permission from [45], © 2011 American Chemical Society.

Mentions: Motivated by biological processes, Sundh et al. [45] developed novel biomimetic membranes generated at nanostructured sensor substrates with controlled curvatures. Such template-supported lipid bilayers (SLBs) with controlled curvature allow for lipid sorting, phase separation, and protein binding. The SLBs were generated by vesicle adsorption followed by rupturing their structures. SLBs contain increased surface area due to underlying nanostructured surfaces with decreased radii of curvatures (ROC) confirmed by excess mass loading on QCM-D, and excess total fluorescence intensities. Figure 6 depicts the lipid bilayers used for phase separation and protein binding. Lipid layers with differing lipid compositions and ROCs are inherently applicable for studying cell membrane related processes in sensor applications using QCM-D.


Biomimetic strategies for sensing biological species.

Hussain M, Wackerlig J, Lieberzeit PA - Biosensors (Basel) (2013)

Schematic representation of lipid bilayers used for protein binding. Reprinted with permission from [45], © 2011 American Chemical Society.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263596&req=5

biosensors-03-00089-f006: Schematic representation of lipid bilayers used for protein binding. Reprinted with permission from [45], © 2011 American Chemical Society.
Mentions: Motivated by biological processes, Sundh et al. [45] developed novel biomimetic membranes generated at nanostructured sensor substrates with controlled curvatures. Such template-supported lipid bilayers (SLBs) with controlled curvature allow for lipid sorting, phase separation, and protein binding. The SLBs were generated by vesicle adsorption followed by rupturing their structures. SLBs contain increased surface area due to underlying nanostructured surfaces with decreased radii of curvatures (ROC) confirmed by excess mass loading on QCM-D, and excess total fluorescence intensities. Figure 6 depicts the lipid bilayers used for phase separation and protein binding. Lipid layers with differing lipid compositions and ROCs are inherently applicable for studying cell membrane related processes in sensor applications using QCM-D.

Bottom Line: A different strategy comprises of devising polymer coatings to change the biocompatibility of surfaces that can also be used to immobilized natural receptors/ligands and thus stabilize them.Rationally speaking, this leads to self-assembled monolayers closely resembling cell membranes, sometimes also including bioreceptors.It mainly focuses on the literature published since 2005.

View Article: PubMed Central - PubMed

Affiliation: Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria; E-Mails: munawar_arif@hotmail.com (M.H.); judith.maehner@univie.ac.at (J.W.).

ABSTRACT
The starting point of modern biosensing was the application of actual biological species for recognition. Increasing understanding of the principles underlying such recognition (and biofunctionality in general), however, has triggered a dynamic field in chemistry and materials sciences that aims at joining the best of two worlds by combining concepts derived from nature with the processability of manmade materials, e.g., sensitivity and ruggedness. This review covers different biomimetic strategies leading to highly selective (bio)chemical sensors: the first section covers molecularly imprinted polymers (MIP) that attempt to generate a fully artificial, macromolecular mold of a species in order to detect it selectively. A different strategy comprises of devising polymer coatings to change the biocompatibility of surfaces that can also be used to immobilized natural receptors/ligands and thus stabilize them. Rationally speaking, this leads to self-assembled monolayers closely resembling cell membranes, sometimes also including bioreceptors. Finally, this review will highlight some approaches to generate artificial analogs of natural recognition materials and biomimetic approaches in nanotechnology. It mainly focuses on the literature published since 2005.

No MeSH data available.