Limits...
Fiber-Optic Fluoroimmunoassay System with a Flow-Through Cell for Rapid On-Site Determination of Escherichia coli O157:H7 by Monitoring Fluorescence Dynamics.

Miyajima K, Koshida T, Arakawa T, Kudo H, Saito H, Yano K, Mitsubayashi K - Biosensors (Basel) (2013)

Bottom Line: The measurement for each sample was completed within 12 min.This minimized the time for measurement down to 6 min.The system is suitable for rapid and direct determination for microorganisms or bacteria in food, clinical, and environmental sources.

View Article: PubMed Central - PubMed

Affiliation: Department of Advanced Sciences and Technology for Biomedical Sensors, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; E-Mail: miya.bdi@tmd.ac.jp ; Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; E-Mails: arakawa.bdi@tmd.ac.jp (T.A.); kudo.bdi@tmd.ac.jp (H.K.).

ABSTRACT
Dynamic fluoroimmunoassay with a flow-through system using optical fiber probes consisting of polystyrene was developed and applied to a quantitative detection of E. coli O157:H7. The system measures E. coli as fluorescence of sandwich-type immune complexes formed by capture antibodies immobilized on the surface of the probe, E. coli cells, and fluorescently labeled detection antibodies. Excitation was carried out using an evanescent wave from the probe. Resulting fluorescence recoupled into the probe was detected by a photodiode. The assay system was constructed with a flow cell which was available for sequential injection of experimental reagents. In vitro characterization was performed using the flow cell, and the calibration range of E. coli O157:H7 was from 10(3) to 10(7) cells/mL. The measurement for each sample was completed within 12 min. Furthermore, it was also possible to estimate the concentrations of E. coli O157:H7 by the increasing rate of fluorescence during binding reaction of detection antibodies to antigens. This minimized the time for measurement down to 6 min. The system is suitable for rapid and direct determination for microorganisms or bacteria in food, clinical, and environmental sources.

No MeSH data available.


Selectivity of the fiber-optic fluoroimmunoassay to other food-borne pathogens. Positive signals were observed with only antigens containing E. coli O157:H7.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263595&req=5

biosensors-03-00120-f008: Selectivity of the fiber-optic fluoroimmunoassay to other food-borne pathogens. Positive signals were observed with only antigens containing E. coli O157:H7.

Mentions: For testing selectivity to other food-borne pathogens, six different bacteria solutions including two-in-one mixture solutions were prepared. The antigen solutions were prepared using nonpathogenic E. coli IAM12119 (105 cells/mL), Staphylococcus sp. (105 cells/mL), Vibrio sp. (105 cells/mL) and E. coli O157:H7 (105 cells/mL). In addition, two types of mixtures of bacteria were prepared; the one was compounded from E. coli O157:H7 (105 cells/mL) and Staphylococcus sp. (105 cells/mL), and the other was compounded from E. coli O157:H7 (105 cells/mL) and nonpathogenic E. coli IAM12119 (105 cells/mL). Fluorescent intensities were measured as described above in each of antigen solutions. Signals of each antigen obtained from differing values between steps III and IV are shown in Figure 8. For comparison, output current of E. coli O157:H7 sample was defined as 100%.


Fiber-Optic Fluoroimmunoassay System with a Flow-Through Cell for Rapid On-Site Determination of Escherichia coli O157:H7 by Monitoring Fluorescence Dynamics.

Miyajima K, Koshida T, Arakawa T, Kudo H, Saito H, Yano K, Mitsubayashi K - Biosensors (Basel) (2013)

Selectivity of the fiber-optic fluoroimmunoassay to other food-borne pathogens. Positive signals were observed with only antigens containing E. coli O157:H7.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263595&req=5

biosensors-03-00120-f008: Selectivity of the fiber-optic fluoroimmunoassay to other food-borne pathogens. Positive signals were observed with only antigens containing E. coli O157:H7.
Mentions: For testing selectivity to other food-borne pathogens, six different bacteria solutions including two-in-one mixture solutions were prepared. The antigen solutions were prepared using nonpathogenic E. coli IAM12119 (105 cells/mL), Staphylococcus sp. (105 cells/mL), Vibrio sp. (105 cells/mL) and E. coli O157:H7 (105 cells/mL). In addition, two types of mixtures of bacteria were prepared; the one was compounded from E. coli O157:H7 (105 cells/mL) and Staphylococcus sp. (105 cells/mL), and the other was compounded from E. coli O157:H7 (105 cells/mL) and nonpathogenic E. coli IAM12119 (105 cells/mL). Fluorescent intensities were measured as described above in each of antigen solutions. Signals of each antigen obtained from differing values between steps III and IV are shown in Figure 8. For comparison, output current of E. coli O157:H7 sample was defined as 100%.

Bottom Line: The measurement for each sample was completed within 12 min.This minimized the time for measurement down to 6 min.The system is suitable for rapid and direct determination for microorganisms or bacteria in food, clinical, and environmental sources.

View Article: PubMed Central - PubMed

Affiliation: Department of Advanced Sciences and Technology for Biomedical Sensors, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; E-Mail: miya.bdi@tmd.ac.jp ; Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; E-Mails: arakawa.bdi@tmd.ac.jp (T.A.); kudo.bdi@tmd.ac.jp (H.K.).

ABSTRACT
Dynamic fluoroimmunoassay with a flow-through system using optical fiber probes consisting of polystyrene was developed and applied to a quantitative detection of E. coli O157:H7. The system measures E. coli as fluorescence of sandwich-type immune complexes formed by capture antibodies immobilized on the surface of the probe, E. coli cells, and fluorescently labeled detection antibodies. Excitation was carried out using an evanescent wave from the probe. Resulting fluorescence recoupled into the probe was detected by a photodiode. The assay system was constructed with a flow cell which was available for sequential injection of experimental reagents. In vitro characterization was performed using the flow cell, and the calibration range of E. coli O157:H7 was from 10(3) to 10(7) cells/mL. The measurement for each sample was completed within 12 min. Furthermore, it was also possible to estimate the concentrations of E. coli O157:H7 by the increasing rate of fluorescence during binding reaction of detection antibodies to antigens. This minimized the time for measurement down to 6 min. The system is suitable for rapid and direct determination for microorganisms or bacteria in food, clinical, and environmental sources.

No MeSH data available.