Limits...
Quinone-based polymers for label-free and reagentless electrochemical immunosensors: application to proteins, antibodies and pesticides detection.

Piro B, Reisberg S, Anquetin G, Duc HT, Pham MC - Biosensors (Basel) (2013)

Bottom Line: Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors.Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format.Herein, these developments are briefly reviewed and put into perspective.

View Article: PubMed Central - PubMed

Affiliation: Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France; E-Mails: steeve.reisberg@univ-paris-diderot.fr (S.R.); guillaume.anquetin@univ-paris-diderot.fr (G.A.); mcpham@univ-paris-diderot.fr (M.-C.P.).

ABSTRACT
Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

No MeSH data available.


CPEef as a function of ATZ concentration, from electrochemical impedance spectroscopy (EIS) experiments, on a poly(JUG-HATZ/α-ATZ)-modified electrode. Results obtained for an offset potential of −0.5 V vs. SCE [68].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263589&req=5

biosensors-03-00058-f016: CPEef as a function of ATZ concentration, from electrochemical impedance spectroscopy (EIS) experiments, on a poly(JUG-HATZ/α-ATZ)-modified electrode. Results obtained for an offset potential of −0.5 V vs. SCE [68].

Mentions: Similar experiments were performed using electrochemical impedance spectroscopy (EIS). The process allows to detect atrazine with low detection limit (0.2 ng·L−1) in a true label-free format (no redox probe added in solution) by following changes in the electrochemical impedance of the sensor. αATZ has a molecular weight of ca. 150 kDa and an hydrodynamic volume of about 25 nm3, which makes a projected surface of 252/3 = 8.5 nm2. These dimensions are able to significantly decrease the electrolyte-film interface capacitance. On the contrary, when the antibody is removed, CPEef increases, as illustrated by the results shown on Figure 16.


Quinone-based polymers for label-free and reagentless electrochemical immunosensors: application to proteins, antibodies and pesticides detection.

Piro B, Reisberg S, Anquetin G, Duc HT, Pham MC - Biosensors (Basel) (2013)

CPEef as a function of ATZ concentration, from electrochemical impedance spectroscopy (EIS) experiments, on a poly(JUG-HATZ/α-ATZ)-modified electrode. Results obtained for an offset potential of −0.5 V vs. SCE [68].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263589&req=5

biosensors-03-00058-f016: CPEef as a function of ATZ concentration, from electrochemical impedance spectroscopy (EIS) experiments, on a poly(JUG-HATZ/α-ATZ)-modified electrode. Results obtained for an offset potential of −0.5 V vs. SCE [68].
Mentions: Similar experiments were performed using electrochemical impedance spectroscopy (EIS). The process allows to detect atrazine with low detection limit (0.2 ng·L−1) in a true label-free format (no redox probe added in solution) by following changes in the electrochemical impedance of the sensor. αATZ has a molecular weight of ca. 150 kDa and an hydrodynamic volume of about 25 nm3, which makes a projected surface of 252/3 = 8.5 nm2. These dimensions are able to significantly decrease the electrolyte-film interface capacitance. On the contrary, when the antibody is removed, CPEef increases, as illustrated by the results shown on Figure 16.

Bottom Line: Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors.Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format.Herein, these developments are briefly reviewed and put into perspective.

View Article: PubMed Central - PubMed

Affiliation: Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France; E-Mails: steeve.reisberg@univ-paris-diderot.fr (S.R.); guillaume.anquetin@univ-paris-diderot.fr (G.A.); mcpham@univ-paris-diderot.fr (M.-C.P.).

ABSTRACT
Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

No MeSH data available.