Limits...
Quinone-based polymers for label-free and reagentless electrochemical immunosensors: application to proteins, antibodies and pesticides detection.

Piro B, Reisberg S, Anquetin G, Duc HT, Pham MC - Biosensors (Basel) (2013)

Bottom Line: Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors.Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format.Herein, these developments are briefly reviewed and put into perspective.

View Article: PubMed Central - PubMed

Affiliation: Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France; E-Mails: steeve.reisberg@univ-paris-diderot.fr (S.R.); guillaume.anquetin@univ-paris-diderot.fr (G.A.); mcpham@univ-paris-diderot.fr (M.-C.P.).

ABSTRACT
Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

No MeSH data available.


Absorbance obtained for spectrophotometric ELISA assays corresponding to: (1), HPV-16-L1 grafted, + αHPV (left bar) or + αOVA (right bar). (2) OVA grafted, + αOVA (left bar) or + αHPV (right bar). (3) HPV grafted + no antibody (pure PBS) (left bar), or nothing grafted + αHPV (right bar) [42].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263589&req=5

biosensors-03-00058-f012: Absorbance obtained for spectrophotometric ELISA assays corresponding to: (1), HPV-16-L1 grafted, + αHPV (left bar) or + αOVA (right bar). (2) OVA grafted, + αOVA (left bar) or + αHPV (right bar). (3) HPV grafted + no antibody (pure PBS) (left bar), or nothing grafted + αHPV (right bar) [42].

Mentions: These results were confirmed by traditional ELISA. It is important to note that due to the chemical nature of the quinone group and its redox process (the film being neutral or negatively charged, but never positively charged), poly(HNQ-co-HSNQA) enables the avoidance of non-specific adsorption of proteins on its surface (Figure 12) and therefore avoids false positives.


Quinone-based polymers for label-free and reagentless electrochemical immunosensors: application to proteins, antibodies and pesticides detection.

Piro B, Reisberg S, Anquetin G, Duc HT, Pham MC - Biosensors (Basel) (2013)

Absorbance obtained for spectrophotometric ELISA assays corresponding to: (1), HPV-16-L1 grafted, + αHPV (left bar) or + αOVA (right bar). (2) OVA grafted, + αOVA (left bar) or + αHPV (right bar). (3) HPV grafted + no antibody (pure PBS) (left bar), or nothing grafted + αHPV (right bar) [42].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263589&req=5

biosensors-03-00058-f012: Absorbance obtained for spectrophotometric ELISA assays corresponding to: (1), HPV-16-L1 grafted, + αHPV (left bar) or + αOVA (right bar). (2) OVA grafted, + αOVA (left bar) or + αHPV (right bar). (3) HPV grafted + no antibody (pure PBS) (left bar), or nothing grafted + αHPV (right bar) [42].
Mentions: These results were confirmed by traditional ELISA. It is important to note that due to the chemical nature of the quinone group and its redox process (the film being neutral or negatively charged, but never positively charged), poly(HNQ-co-HSNQA) enables the avoidance of non-specific adsorption of proteins on its surface (Figure 12) and therefore avoids false positives.

Bottom Line: Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors.Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format.Herein, these developments are briefly reviewed and put into perspective.

View Article: PubMed Central - PubMed

Affiliation: Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France; E-Mails: steeve.reisberg@univ-paris-diderot.fr (S.R.); guillaume.anquetin@univ-paris-diderot.fr (G.A.); mcpham@univ-paris-diderot.fr (M.-C.P.).

ABSTRACT
Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

No MeSH data available.