Limits...
Quinone-based polymers for label-free and reagentless electrochemical immunosensors: application to proteins, antibodies and pesticides detection.

Piro B, Reisberg S, Anquetin G, Duc HT, Pham MC - Biosensors (Basel) (2013)

Bottom Line: Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors.Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format.Herein, these developments are briefly reviewed and put into perspective.

View Article: PubMed Central - PubMed

Affiliation: Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France; E-Mails: steeve.reisberg@univ-paris-diderot.fr (S.R.); guillaume.anquetin@univ-paris-diderot.fr (G.A.); mcpham@univ-paris-diderot.fr (M.-C.P.).

ABSTRACT
Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

No MeSH data available.


General structure of α-amino acids.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263589&req=5

biosensors-03-00058-f007: General structure of α-amino acids.

Mentions: α-Amino acids are the building blocks of proteins and peptides. They carry a primary amine group bound to the α-carbon of the carboxylic acid group, which gives them the generic structure H2N-CHR-COOH wherein R represents the side chain (a functional group) which identifies the α-amino acid. Their general structure is shown in Figure 7.


Quinone-based polymers for label-free and reagentless electrochemical immunosensors: application to proteins, antibodies and pesticides detection.

Piro B, Reisberg S, Anquetin G, Duc HT, Pham MC - Biosensors (Basel) (2013)

General structure of α-amino acids.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263589&req=5

biosensors-03-00058-f007: General structure of α-amino acids.
Mentions: α-Amino acids are the building blocks of proteins and peptides. They carry a primary amine group bound to the α-carbon of the carboxylic acid group, which gives them the generic structure H2N-CHR-COOH wherein R represents the side chain (a functional group) which identifies the α-amino acid. Their general structure is shown in Figure 7.

Bottom Line: Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors.Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format.Herein, these developments are briefly reviewed and put into perspective.

View Article: PubMed Central - PubMed

Affiliation: Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France; E-Mails: steeve.reisberg@univ-paris-diderot.fr (S.R.); guillaume.anquetin@univ-paris-diderot.fr (G.A.); mcpham@univ-paris-diderot.fr (M.-C.P.).

ABSTRACT
Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

No MeSH data available.