Limits...
Quinone-based polymers for label-free and reagentless electrochemical immunosensors: application to proteins, antibodies and pesticides detection.

Piro B, Reisberg S, Anquetin G, Duc HT, Pham MC - Biosensors (Basel) (2013)

Bottom Line: Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors.Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format.Herein, these developments are briefly reviewed and put into perspective.

View Article: PubMed Central - PubMed

Affiliation: Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France; E-Mails: steeve.reisberg@univ-paris-diderot.fr (S.R.); guillaume.anquetin@univ-paris-diderot.fr (G.A.); mcpham@univ-paris-diderot.fr (M.-C.P.).

ABSTRACT
Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

No MeSH data available.


Square wave voltammetry (SWV) obtained for poly(HNQ-co-HSNQA)-modified electrodes before ovalbumin (OVA) grafting (solid line), after OVA grafting (dashed line) and after anti-ovalbumin (αOVA) complexation (dotted line). Serum dilution: 1/50 [44].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263589&req=5

biosensors-03-00058-f005: Square wave voltammetry (SWV) obtained for poly(HNQ-co-HSNQA)-modified electrodes before ovalbumin (OVA) grafting (solid line), after OVA grafting (dashed line) and after anti-ovalbumin (αOVA) complexation (dotted line). Serum dilution: 1/50 [44].

Mentions: Proteins are macromolecules made of α-amino acids linked together by peptide bonds. The molecular weight is a fundamental characteristic of each protein; it is generally greater than 10,000 Da (10 kDa). The typical model used in immunosensors for the study of protein/antibody interactions is the ovalbumin/anti-ovalbumin (OVA/αOVA) system. We used this system as a model in our quinone-based biosensor. Poly(5-hydroxy-1,4-naphthoquinone-co-5-hydroxy-2-thioacetic acid-1,4-naphthoquinone) (poly(HNQ-co-HSNQA)), was used as both the immobilization and transduction element. OVA was grafted on this polymer and used as probe to detect αOVA present in solution. The immune complex was detected by recording the electrochemical signal using square wave voltammetry (SWV, Figure 5). In aqueous solution, quinones transfer two electrons and two protons in a concerted process. We assume that the presence of two pairs of peaks in PBS is due to two different types of quinones on the electrode surface: in the bulk of the polymer and at the polymer/electrolyte interface. The current decreased upon addition of αOVA, whereas no signal was observed upon addition of non-specific anti-KLH or diluted (1/50) normal serum.


Quinone-based polymers for label-free and reagentless electrochemical immunosensors: application to proteins, antibodies and pesticides detection.

Piro B, Reisberg S, Anquetin G, Duc HT, Pham MC - Biosensors (Basel) (2013)

Square wave voltammetry (SWV) obtained for poly(HNQ-co-HSNQA)-modified electrodes before ovalbumin (OVA) grafting (solid line), after OVA grafting (dashed line) and after anti-ovalbumin (αOVA) complexation (dotted line). Serum dilution: 1/50 [44].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263589&req=5

biosensors-03-00058-f005: Square wave voltammetry (SWV) obtained for poly(HNQ-co-HSNQA)-modified electrodes before ovalbumin (OVA) grafting (solid line), after OVA grafting (dashed line) and after anti-ovalbumin (αOVA) complexation (dotted line). Serum dilution: 1/50 [44].
Mentions: Proteins are macromolecules made of α-amino acids linked together by peptide bonds. The molecular weight is a fundamental characteristic of each protein; it is generally greater than 10,000 Da (10 kDa). The typical model used in immunosensors for the study of protein/antibody interactions is the ovalbumin/anti-ovalbumin (OVA/αOVA) system. We used this system as a model in our quinone-based biosensor. Poly(5-hydroxy-1,4-naphthoquinone-co-5-hydroxy-2-thioacetic acid-1,4-naphthoquinone) (poly(HNQ-co-HSNQA)), was used as both the immobilization and transduction element. OVA was grafted on this polymer and used as probe to detect αOVA present in solution. The immune complex was detected by recording the electrochemical signal using square wave voltammetry (SWV, Figure 5). In aqueous solution, quinones transfer two electrons and two protons in a concerted process. We assume that the presence of two pairs of peaks in PBS is due to two different types of quinones on the electrode surface: in the bulk of the polymer and at the polymer/electrolyte interface. The current decreased upon addition of αOVA, whereas no signal was observed upon addition of non-specific anti-KLH or diluted (1/50) normal serum.

Bottom Line: Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors.Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format.Herein, these developments are briefly reviewed and put into perspective.

View Article: PubMed Central - PubMed

Affiliation: Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France; E-Mails: steeve.reisberg@univ-paris-diderot.fr (S.R.); guillaume.anquetin@univ-paris-diderot.fr (G.A.); mcpham@univ-paris-diderot.fr (M.-C.P.).

ABSTRACT
Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

No MeSH data available.