Limits...
Quinone-based polymers for label-free and reagentless electrochemical immunosensors: application to proteins, antibodies and pesticides detection.

Piro B, Reisberg S, Anquetin G, Duc HT, Pham MC - Biosensors (Basel) (2013)

Bottom Line: Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors.Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format.Herein, these developments are briefly reviewed and put into perspective.

View Article: PubMed Central - PubMed

Affiliation: Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France; E-Mails: steeve.reisberg@univ-paris-diderot.fr (S.R.); guillaume.anquetin@univ-paris-diderot.fr (G.A.); mcpham@univ-paris-diderot.fr (M.-C.P.).

ABSTRACT
Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

No MeSH data available.


Classical formats used for detections of proteins or antibodies. (a) Grafted antibodies (Ab) to detect proteins; (b) Grafted antibody fragment F(ab’) to detect proteins; (c) Grafted protein to detect Ab. Use of peptides to detect (d) antibodies or (e) proteins. (f) Use of small organic molecules.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263589&req=5

biosensors-03-00058-f002: Classical formats used for detections of proteins or antibodies. (a) Grafted antibodies (Ab) to detect proteins; (b) Grafted antibody fragment F(ab’) to detect proteins; (c) Grafted protein to detect Ab. Use of peptides to detect (d) antibodies or (e) proteins. (f) Use of small organic molecules.

Mentions: The major bottleneck is how to achieve direct electrochemical transduction when there is no intrinsic charge transfer reaction following molecular recognition. The most original and innovative idea is to directly immobilize the redox transducer on the sensor surface so that its electroactivity can be influenced by steric hindrance of heavy molecules (Ab or proteins) in its neighborhood. The detection of the target is performed simply by recording the redox current before and after recognition. This approach allows the development of easy-to-use, reagentless and label-free electrochemical devices. Several sensing architectures could be designed for such an approach, schematized and summarized in Figure 2 below.


Quinone-based polymers for label-free and reagentless electrochemical immunosensors: application to proteins, antibodies and pesticides detection.

Piro B, Reisberg S, Anquetin G, Duc HT, Pham MC - Biosensors (Basel) (2013)

Classical formats used for detections of proteins or antibodies. (a) Grafted antibodies (Ab) to detect proteins; (b) Grafted antibody fragment F(ab’) to detect proteins; (c) Grafted protein to detect Ab. Use of peptides to detect (d) antibodies or (e) proteins. (f) Use of small organic molecules.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263589&req=5

biosensors-03-00058-f002: Classical formats used for detections of proteins or antibodies. (a) Grafted antibodies (Ab) to detect proteins; (b) Grafted antibody fragment F(ab’) to detect proteins; (c) Grafted protein to detect Ab. Use of peptides to detect (d) antibodies or (e) proteins. (f) Use of small organic molecules.
Mentions: The major bottleneck is how to achieve direct electrochemical transduction when there is no intrinsic charge transfer reaction following molecular recognition. The most original and innovative idea is to directly immobilize the redox transducer on the sensor surface so that its electroactivity can be influenced by steric hindrance of heavy molecules (Ab or proteins) in its neighborhood. The detection of the target is performed simply by recording the redox current before and after recognition. This approach allows the development of easy-to-use, reagentless and label-free electrochemical devices. Several sensing architectures could be designed for such an approach, schematized and summarized in Figure 2 below.

Bottom Line: Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors.Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format.Herein, these developments are briefly reviewed and put into perspective.

View Article: PubMed Central - PubMed

Affiliation: Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France; E-Mails: steeve.reisberg@univ-paris-diderot.fr (S.R.); guillaume.anquetin@univ-paris-diderot.fr (G.A.); mcpham@univ-paris-diderot.fr (M.-C.P.).

ABSTRACT
Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

No MeSH data available.