Limits...
Cell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design.

Patel SK, Williams J, Janjic JM - Biosensors (Basel) (2013)

Bottom Line: This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro.Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity.Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented.

View Article: PubMed Central - PubMed

Affiliation: Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA. patels1@duq.edu.

ABSTRACT
This report describes novel perfluorocarbon (PFC) nanoemulsions designed to improve ex vivo cell labeling for 19F magnetic resonance imaging (MRI). 19F MRI is a powerful non-invasive technique for monitoring cells of the immune system in vivo, where cells are labeled ex vivo with PFC nanoemulsions in cell culture. The quality of 19F MRI is directly affected by the quality of ex vivo PFC cell labeling. When co-cultured with cells for longer periods of time, nanoemulsions tend to settle due to high specific weight of PFC oils (1.5-2.0 g/mL). This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro. To solve this problem, novel PFC nanoemulsions are reported which demonstrate lack of sedimentation and high stability under cell labeling conditions. They are monodisperse, have small droplet size (~130 nm) and low polydispersity (<0.15), show a single peak in the 19F nuclear magnetic resonance spectrum at -71.4 ppm and possess high fluorine content. The droplet size and polydispersity remained unchanged after 160 days of follow up at three temperatures (4, 25 and 37 °C). Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity. Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented.

No MeSH data available.


Related in: MedlinePlus

Nanoemulsion prepared using sonication with C8-PFTE, olive oil and different ratio of Pluronic® P123/P105 at 3% w/v. The error bars represent the half width of polydispersity index (PDIw/2).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263580&req=5

biosensors-03-00341-f004: Nanoemulsion prepared using sonication with C8-PFTE, olive oil and different ratio of Pluronic® P123/P105 at 3% w/v. The error bars represent the half width of polydispersity index (PDIw/2).

Mentions: Nanoemulsions (S7–S9) formulated using probe sonication showed droplet size and PDI less than 200 nm and 0.2 respectively. All the formulations showed stability for at least 12 days as assessed by DLS (Figure 4). Zeta potential values were in the range of −8 to −11 mV (Table 2). Formulation S8 was selected because the surfactant ratio corresponds to a HLB value of 11.7 which is lowest among the tested combinations. Due to the presence of a hydrophobic dispersed phase, a lower HLB value was preferred. Replacement of a portion of olive oil with C8-PFTE has not affected the stability of the nanoemulsion. Also, by comparing Formulations S6 (Table 1) and S7 (Table 2), the average droplet diameter was shown to be reduced by 20 nm after replacing olive oil with C8-PFTE. All formulations containing C8-PFTE showed reduced droplet size compared to olive oil alone.


Cell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design.

Patel SK, Williams J, Janjic JM - Biosensors (Basel) (2013)

Nanoemulsion prepared using sonication with C8-PFTE, olive oil and different ratio of Pluronic® P123/P105 at 3% w/v. The error bars represent the half width of polydispersity index (PDIw/2).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263580&req=5

biosensors-03-00341-f004: Nanoemulsion prepared using sonication with C8-PFTE, olive oil and different ratio of Pluronic® P123/P105 at 3% w/v. The error bars represent the half width of polydispersity index (PDIw/2).
Mentions: Nanoemulsions (S7–S9) formulated using probe sonication showed droplet size and PDI less than 200 nm and 0.2 respectively. All the formulations showed stability for at least 12 days as assessed by DLS (Figure 4). Zeta potential values were in the range of −8 to −11 mV (Table 2). Formulation S8 was selected because the surfactant ratio corresponds to a HLB value of 11.7 which is lowest among the tested combinations. Due to the presence of a hydrophobic dispersed phase, a lower HLB value was preferred. Replacement of a portion of olive oil with C8-PFTE has not affected the stability of the nanoemulsion. Also, by comparing Formulations S6 (Table 1) and S7 (Table 2), the average droplet diameter was shown to be reduced by 20 nm after replacing olive oil with C8-PFTE. All formulations containing C8-PFTE showed reduced droplet size compared to olive oil alone.

Bottom Line: This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro.Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity.Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented.

View Article: PubMed Central - PubMed

Affiliation: Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA. patels1@duq.edu.

ABSTRACT
This report describes novel perfluorocarbon (PFC) nanoemulsions designed to improve ex vivo cell labeling for 19F magnetic resonance imaging (MRI). 19F MRI is a powerful non-invasive technique for monitoring cells of the immune system in vivo, where cells are labeled ex vivo with PFC nanoemulsions in cell culture. The quality of 19F MRI is directly affected by the quality of ex vivo PFC cell labeling. When co-cultured with cells for longer periods of time, nanoemulsions tend to settle due to high specific weight of PFC oils (1.5-2.0 g/mL). This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro. To solve this problem, novel PFC nanoemulsions are reported which demonstrate lack of sedimentation and high stability under cell labeling conditions. They are monodisperse, have small droplet size (~130 nm) and low polydispersity (<0.15), show a single peak in the 19F nuclear magnetic resonance spectrum at -71.4 ppm and possess high fluorine content. The droplet size and polydispersity remained unchanged after 160 days of follow up at three temperatures (4, 25 and 37 °C). Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity. Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented.

No MeSH data available.


Related in: MedlinePlus