Limits...
A Self-Referencing Detection of Microorganisms Using Surface Enhanced Raman Scattering Nanoprobes in a Test-in-a-Tube Platform.

Xiao N, Wang C, Yu C - Biosensors (Basel) (2013)

Bottom Line: Anisotropic nanoparticles (i.e., silver nanocubes) were functionalized with target-specific antibodies and Raman active tags to serve as nanoprobes for the rapid detection of bacteria in a test-in-a-tube platform.The assessment through the dual signals (superimposed target and tag Raman signatures) supported a specific recognition of the targets in a single step with no washing/separation needed to a sensitivity of 102 CFU/mL, even in the presence of non-target bacteria at a 10 times higher concentration.The self-referencing protocol implemented with a portable Raman spectrometer potentially can become an easy-to-use, field-deployable spectroscopic sensor for onsite detection of pathogenic microorganisms.

View Article: PubMed Central - PubMed

Affiliation: Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA. nxiao@iastate.edu.

ABSTRACT
Anisotropic nanoparticles (i.e., silver nanocubes) were functionalized with target-specific antibodies and Raman active tags to serve as nanoprobes for the rapid detection of bacteria in a test-in-a-tube platform. A self-referencing scheme was developed and implemented in which surface enhanced Raman spectroscopic (SERS) signatures of the targets were observed superimposed with the SERS signals of the Raman tags. The assessment through the dual signals (superimposed target and tag Raman signatures) supported a specific recognition of the targets in a single step with no washing/separation needed to a sensitivity of 102 CFU/mL, even in the presence of non-target bacteria at a 10 times higher concentration. The self-referencing protocol implemented with a portable Raman spectrometer potentially can become an easy-to-use, field-deployable spectroscopic sensor for onsite detection of pathogenic microorganisms.

No MeSH data available.


Related in: MedlinePlus

STEM image of the silver nanocube.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263577&req=5

biosensors-03-00312-f008: STEM image of the silver nanocube.

Mentions: The silver nanocubes synthesized in this study have a average size of 41 nm, with a standard deviation of 7.8 nm, measured over 437 particles imaged using STEM. Typical STEM image is shown in Figure S1.


A Self-Referencing Detection of Microorganisms Using Surface Enhanced Raman Scattering Nanoprobes in a Test-in-a-Tube Platform.

Xiao N, Wang C, Yu C - Biosensors (Basel) (2013)

STEM image of the silver nanocube.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263577&req=5

biosensors-03-00312-f008: STEM image of the silver nanocube.
Mentions: The silver nanocubes synthesized in this study have a average size of 41 nm, with a standard deviation of 7.8 nm, measured over 437 particles imaged using STEM. Typical STEM image is shown in Figure S1.

Bottom Line: Anisotropic nanoparticles (i.e., silver nanocubes) were functionalized with target-specific antibodies and Raman active tags to serve as nanoprobes for the rapid detection of bacteria in a test-in-a-tube platform.The assessment through the dual signals (superimposed target and tag Raman signatures) supported a specific recognition of the targets in a single step with no washing/separation needed to a sensitivity of 102 CFU/mL, even in the presence of non-target bacteria at a 10 times higher concentration.The self-referencing protocol implemented with a portable Raman spectrometer potentially can become an easy-to-use, field-deployable spectroscopic sensor for onsite detection of pathogenic microorganisms.

View Article: PubMed Central - PubMed

Affiliation: Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA. nxiao@iastate.edu.

ABSTRACT
Anisotropic nanoparticles (i.e., silver nanocubes) were functionalized with target-specific antibodies and Raman active tags to serve as nanoprobes for the rapid detection of bacteria in a test-in-a-tube platform. A self-referencing scheme was developed and implemented in which surface enhanced Raman spectroscopic (SERS) signatures of the targets were observed superimposed with the SERS signals of the Raman tags. The assessment through the dual signals (superimposed target and tag Raman signatures) supported a specific recognition of the targets in a single step with no washing/separation needed to a sensitivity of 102 CFU/mL, even in the presence of non-target bacteria at a 10 times higher concentration. The self-referencing protocol implemented with a portable Raman spectrometer potentially can become an easy-to-use, field-deployable spectroscopic sensor for onsite detection of pathogenic microorganisms.

No MeSH data available.


Related in: MedlinePlus