Limits...
Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus

(a) Cross-sectional schematic of the electrochemical sensor with CNTs-ITO microelectrode. Ag/AgCl acted as reference electrode (RE) and Pt wire as counter electrode (CE); (b) Schematic of the single-cell release monitoring with the CNTs modified ITO electrode; (c) The amperometric response to stimulation from a single cell. (Reprinted from [183]. © 2011, with permission from Elsevier).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f027: (a) Cross-sectional schematic of the electrochemical sensor with CNTs-ITO microelectrode. Ag/AgCl acted as reference electrode (RE) and Pt wire as counter electrode (CE); (b) Schematic of the single-cell release monitoring with the CNTs modified ITO electrode; (c) The amperometric response to stimulation from a single cell. (Reprinted from [183]. © 2011, with permission from Elsevier).

Mentions: Nanomaterials play important roles in many aspects of biosensors. Owing to the large surface-volume ratio, nanogold particles are employed to modify the sensitive surface and enlarge the effective working area. Magnetic nanoparticles are usually used to accumulate or separate some important biomolecules conveniently [182]. Since carbon nanotubes (CNTs) have high electrocatalytic effect and fast electro-transfer rate, they are always used in the detection strategy to assist signal detection [183]. As shown in Figure 27(a), an indium tin oxide (ITO) electrode modified with CNTs was used as the working electrode and SU8 was patterned to limit the dimension of the ITO electrode. PC12 cells were cultured in a limited chamber (hundreds of μm2). Once extracellular stimuli induced the exocytosis of cells, the molecules can be detected by the CNTs-ITO electrode, as illustrated in Figure 27(b). The results demonstrated that the sensitivity of the electrochemical sensor after CNTs surface modification was improved by 2.5–3 orders of magnitude and a typical amperometric response from a single cell was shown in Figure 27(c). The distinct optical performance of nanomaterials is also very attractive in the development of optical biosensors. Many kinds of nanomaterial-based biosensors are investigated to detect DNA, protein, and cellular substance by diverse detection technologies [184].


Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

(a) Cross-sectional schematic of the electrochemical sensor with CNTs-ITO microelectrode. Ag/AgCl acted as reference electrode (RE) and Pt wire as counter electrode (CE); (b) Schematic of the single-cell release monitoring with the CNTs modified ITO electrode; (c) The amperometric response to stimulation from a single cell. (Reprinted from [183]. © 2011, with permission from Elsevier).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f027: (a) Cross-sectional schematic of the electrochemical sensor with CNTs-ITO microelectrode. Ag/AgCl acted as reference electrode (RE) and Pt wire as counter electrode (CE); (b) Schematic of the single-cell release monitoring with the CNTs modified ITO electrode; (c) The amperometric response to stimulation from a single cell. (Reprinted from [183]. © 2011, with permission from Elsevier).
Mentions: Nanomaterials play important roles in many aspects of biosensors. Owing to the large surface-volume ratio, nanogold particles are employed to modify the sensitive surface and enlarge the effective working area. Magnetic nanoparticles are usually used to accumulate or separate some important biomolecules conveniently [182]. Since carbon nanotubes (CNTs) have high electrocatalytic effect and fast electro-transfer rate, they are always used in the detection strategy to assist signal detection [183]. As shown in Figure 27(a), an indium tin oxide (ITO) electrode modified with CNTs was used as the working electrode and SU8 was patterned to limit the dimension of the ITO electrode. PC12 cells were cultured in a limited chamber (hundreds of μm2). Once extracellular stimuli induced the exocytosis of cells, the molecules can be detected by the CNTs-ITO electrode, as illustrated in Figure 27(b). The results demonstrated that the sensitivity of the electrochemical sensor after CNTs surface modification was improved by 2.5–3 orders of magnitude and a typical amperometric response from a single cell was shown in Figure 27(c). The distinct optical performance of nanomaterials is also very attractive in the development of optical biosensors. Many kinds of nanomaterial-based biosensors are investigated to detect DNA, protein, and cellular substance by diverse detection technologies [184].

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus