Limits...
Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus

(a) Autotranswell cell chip for migration assay; (b) Real time monitoring of cell migration. Inset shows the time course of transmigration.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f026: (a) Autotranswell cell chip for migration assay; (b) Real time monitoring of cell migration. Inset shows the time course of transmigration.

Mentions: The microfluidic chip with specific micro-fabricated electrodes has broad applications in cell morphology research and has many dramatic advantages over traditional assays, such as simple operation, rapid detection, and less invasiveness. Cells are cultured in the microfluidic chip and the culture media solution can be introduced automatically through the microfluidic channel. Using suitable electrochemical detection methods, cell morphology information, such as adhesion, migration, proliferation, and apoptosis, can be monitored in real time. One typical example is the automatic transwell assay, in which two microfluidic chambers separated by a porous membrane are designed to monitor cell migration [172]. As illustrated in Figure 26(a), cells are seeded in the upper chamber through microfluidic channels and an EIS sensor is placed in the lower chamber. Once cells migrate from the upper chamber into the lower one, great impedance changes can be detected. Figure 26(b) shows the impedance changes at different times. In addition, the influence of different ECM components can be also detected by this assay.


Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

(a) Autotranswell cell chip for migration assay; (b) Real time monitoring of cell migration. Inset shows the time course of transmigration.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f026: (a) Autotranswell cell chip for migration assay; (b) Real time monitoring of cell migration. Inset shows the time course of transmigration.
Mentions: The microfluidic chip with specific micro-fabricated electrodes has broad applications in cell morphology research and has many dramatic advantages over traditional assays, such as simple operation, rapid detection, and less invasiveness. Cells are cultured in the microfluidic chip and the culture media solution can be introduced automatically through the microfluidic channel. Using suitable electrochemical detection methods, cell morphology information, such as adhesion, migration, proliferation, and apoptosis, can be monitored in real time. One typical example is the automatic transwell assay, in which two microfluidic chambers separated by a porous membrane are designed to monitor cell migration [172]. As illustrated in Figure 26(a), cells are seeded in the upper chamber through microfluidic channels and an EIS sensor is placed in the lower chamber. Once cells migrate from the upper chamber into the lower one, great impedance changes can be detected. Figure 26(b) shows the impedance changes at different times. In addition, the influence of different ECM components can be also detected by this assay.

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus