Limits...
Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus

Schematic diagram of an integrated photovoltage-based biosensor used for cellular detection. (a) Sensor design; (b) Sensor fabrication.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f025: Schematic diagram of an integrated photovoltage-based biosensor used for cellular detection. (a) Sensor design; (b) Sensor fabrication.

Mentions: From another point of view, extracellular acidification and redox potential are important indicators of cell metabolism activity. As the EIS and EMIS sensor have similar structure and working principle, it makes sense to integrate the two sensors on the same chip. The related work has been carried out by Wang et al. [170]. The integrated potentiometric sensor (Figure 25) was constructed by depositing a gold metal layer on a partial surface of silicon dioxide. The sensitivity for pH and redox potential measurement is approximately 41.6 mV/pH and 53.2 mV/log[Fe(III)/Fe(II)], respectively. The latter is in accordance with the work of Adami et al. [171]. The integrated sensor was used for nephrotoxicity assay under drug stimulation.


Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Schematic diagram of an integrated photovoltage-based biosensor used for cellular detection. (a) Sensor design; (b) Sensor fabrication.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f025: Schematic diagram of an integrated photovoltage-based biosensor used for cellular detection. (a) Sensor design; (b) Sensor fabrication.
Mentions: From another point of view, extracellular acidification and redox potential are important indicators of cell metabolism activity. As the EIS and EMIS sensor have similar structure and working principle, it makes sense to integrate the two sensors on the same chip. The related work has been carried out by Wang et al. [170]. The integrated potentiometric sensor (Figure 25) was constructed by depositing a gold metal layer on a partial surface of silicon dioxide. The sensitivity for pH and redox potential measurement is approximately 41.6 mV/pH and 53.2 mV/log[Fe(III)/Fe(II)], respectively. The latter is in accordance with the work of Adami et al. [171]. The integrated sensor was used for nephrotoxicity assay under drug stimulation.

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus