Limits...
Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus

Detection of cellular redox reactions with use of menadione to link intra- and extra-cellular redox pairs. (a) Two-electron reduction of menadione to menadiol; (b) Hypothetical menadione reaction cycle; (c) Potentiometric measurements of menadione mediated ferricyanide reduction by cells. (Reproduced with permission from [51]. © 1998 American Chemical Society).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f020: Detection of cellular redox reactions with use of menadione to link intra- and extra-cellular redox pairs. (a) Two-electron reduction of menadione to menadiol; (b) Hypothetical menadione reaction cycle; (c) Potentiometric measurements of menadione mediated ferricyanide reduction by cells. (Reproduced with permission from [51]. © 1998 American Chemical Society).

Mentions: The most essential point in their study lies in measurement of the redox activity of the interior of cells noninvasively from extracellular microenvironment change. A carrier mediator that exchanges electrons rapidly with both the exterior and interior couple and links the extracellular electrolyte solution to intracellular redox pairs was used. As shown in Figure 20, the couple menadione/menadiol was used as an effective carrier mediator, because both of them are lipid soluble. Menadione and menadiol can be oxidized and/or reduced by intracellular enzymes. The major enzyme had been demonstrated to be NADPH, produced by the pentose phosphate pathway. In the meantime, the external medium bathing the cells contains a ferricyanide/ferrocyanide couple which reacts rapidly with menadiol. Thus the monitored redox potential of the ferricyanide/ferrocyanide couple is a measure of intracellular redox activity. Using this method they studied three cell lines (L929, CHO, and CH27), and the effect of reactions of mitochondrial electron transport chain and signal transduction cascade on the cell reduction rate.


Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Detection of cellular redox reactions with use of menadione to link intra- and extra-cellular redox pairs. (a) Two-electron reduction of menadione to menadiol; (b) Hypothetical menadione reaction cycle; (c) Potentiometric measurements of menadione mediated ferricyanide reduction by cells. (Reproduced with permission from [51]. © 1998 American Chemical Society).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f020: Detection of cellular redox reactions with use of menadione to link intra- and extra-cellular redox pairs. (a) Two-electron reduction of menadione to menadiol; (b) Hypothetical menadione reaction cycle; (c) Potentiometric measurements of menadione mediated ferricyanide reduction by cells. (Reproduced with permission from [51]. © 1998 American Chemical Society).
Mentions: The most essential point in their study lies in measurement of the redox activity of the interior of cells noninvasively from extracellular microenvironment change. A carrier mediator that exchanges electrons rapidly with both the exterior and interior couple and links the extracellular electrolyte solution to intracellular redox pairs was used. As shown in Figure 20, the couple menadione/menadiol was used as an effective carrier mediator, because both of them are lipid soluble. Menadione and menadiol can be oxidized and/or reduced by intracellular enzymes. The major enzyme had been demonstrated to be NADPH, produced by the pentose phosphate pathway. In the meantime, the external medium bathing the cells contains a ferricyanide/ferrocyanide couple which reacts rapidly with menadiol. Thus the monitored redox potential of the ferricyanide/ferrocyanide couple is a measure of intracellular redox activity. Using this method they studied three cell lines (L929, CHO, and CH27), and the effect of reactions of mitochondrial electron transport chain and signal transduction cascade on the cell reduction rate.

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus