Limits...
Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus

Schematic diagram of extracellular acidification induced by cellular metabolism and physiological processes. With receptor stimulation, the cellular physiological activities will be affected. The corresponding ATP consumption is compensated by the increased uptake and metabolism of glucose, which results in an increased secretion of acidic products. The extracellular acidification can be detected by LAPS. (Reprinted from [111]. © 2012, with permission from World Scientific Publishing Co.).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f018: Schematic diagram of extracellular acidification induced by cellular metabolism and physiological processes. With receptor stimulation, the cellular physiological activities will be affected. The corresponding ATP consumption is compensated by the increased uptake and metabolism of glucose, which results in an increased secretion of acidic products. The extracellular acidification can be detected by LAPS. (Reprinted from [111]. © 2012, with permission from World Scientific Publishing Co.).

Mentions: As the basic physiological feature of life, heterotrophic cells absorb various nutrients, produce energy and secrete acidic wastes for growth and development. Metabolic energy is generated by carbon sources such as sugars, amino acids and fatty acid. The schematic of cellular metabolism and physiological processes is displayed in Figure 18. Under normal conditions, glucose is taken up by the cells and degraded into energy and acidic products. Under natural aerobic conditions, glucose is converted into CO2 and energy via glycolysis, the citric acid cycle and oxidative phosphorylation. While under anaerobic conditions, glucose is converted into lactate with energy [110] via glycolysis and combining lactate dehydrogenase. The ATP generation per glucose molecule under aerobic conditions is 19 times higher than that under anaerobic conditions (38 ATP/glucose versus 2 ATP/glucose), while the acidic product is much less than anaerobic conditions (0.167 H+/ATP versus 1 H+/ATP).


Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Schematic diagram of extracellular acidification induced by cellular metabolism and physiological processes. With receptor stimulation, the cellular physiological activities will be affected. The corresponding ATP consumption is compensated by the increased uptake and metabolism of glucose, which results in an increased secretion of acidic products. The extracellular acidification can be detected by LAPS. (Reprinted from [111]. © 2012, with permission from World Scientific Publishing Co.).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f018: Schematic diagram of extracellular acidification induced by cellular metabolism and physiological processes. With receptor stimulation, the cellular physiological activities will be affected. The corresponding ATP consumption is compensated by the increased uptake and metabolism of glucose, which results in an increased secretion of acidic products. The extracellular acidification can be detected by LAPS. (Reprinted from [111]. © 2012, with permission from World Scientific Publishing Co.).
Mentions: As the basic physiological feature of life, heterotrophic cells absorb various nutrients, produce energy and secrete acidic wastes for growth and development. Metabolic energy is generated by carbon sources such as sugars, amino acids and fatty acid. The schematic of cellular metabolism and physiological processes is displayed in Figure 18. Under normal conditions, glucose is taken up by the cells and degraded into energy and acidic products. Under natural aerobic conditions, glucose is converted into CO2 and energy via glycolysis, the citric acid cycle and oxidative phosphorylation. While under anaerobic conditions, glucose is converted into lactate with energy [110] via glycolysis and combining lactate dehydrogenase. The ATP generation per glucose molecule under aerobic conditions is 19 times higher than that under anaerobic conditions (38 ATP/glucose versus 2 ATP/glucose), while the acidic product is much less than anaerobic conditions (0.167 H+/ATP versus 1 H+/ATP).

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus