Limits...
Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus

(a) The impedance variation for CaSki cells showing the real-time progress of cell migration; (b–e) The photographs taken in the progress of cell migration onto the electrodes; (f,g) The fluorescence image of the sensor, showing cell viability after modification of the SAMs and application of the DC current (4 times independent repeats for the experimental data). (Reprinted from [42]. © 2012, with permission from the Royal Society of Chemistry).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f016: (a) The impedance variation for CaSki cells showing the real-time progress of cell migration; (b–e) The photographs taken in the progress of cell migration onto the electrodes; (f,g) The fluorescence image of the sensor, showing cell viability after modification of the SAMs and application of the DC current (4 times independent repeats for the experimental data). (Reprinted from [42]. © 2012, with permission from the Royal Society of Chemistry).

Mentions: Wound healing assays have been carried out in tissue culture for many years in the study of cell behavior, including appraising the migration and proliferative capacities of different cells under various culture conditions. The application of impedance sensing in wound-healing investigation was first reported by Noiri et al. [97]. They electro-permeated the confluent cell monolayer to generate wounds on the electrode using a DC current. The rate of restitution of monolayer integrity, as judged by the restoration of the electrical impedance, was monitored by an electrical impedance sensor for 20 h. Then, Keese et al. [98] improved the wound generation methods by using AC currents in the milliampere range at high frequency, so the wound was restricted to the small electrode and no electrode damage was found. This method provided highly reproducible results comparable to that observed in traditional wound-healing experiments. Wang et al. [42] modified the wound healing methods by using SAMs. The SAMs were formed on the electrodes to inhibit cell adhesion, which could effectively mimic wounds in a cell monolayer. After a DC pulse was applied, the SAMs were destroyed and cells began to migrate (Figure 16).


Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

(a) The impedance variation for CaSki cells showing the real-time progress of cell migration; (b–e) The photographs taken in the progress of cell migration onto the electrodes; (f,g) The fluorescence image of the sensor, showing cell viability after modification of the SAMs and application of the DC current (4 times independent repeats for the experimental data). (Reprinted from [42]. © 2012, with permission from the Royal Society of Chemistry).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f016: (a) The impedance variation for CaSki cells showing the real-time progress of cell migration; (b–e) The photographs taken in the progress of cell migration onto the electrodes; (f,g) The fluorescence image of the sensor, showing cell viability after modification of the SAMs and application of the DC current (4 times independent repeats for the experimental data). (Reprinted from [42]. © 2012, with permission from the Royal Society of Chemistry).
Mentions: Wound healing assays have been carried out in tissue culture for many years in the study of cell behavior, including appraising the migration and proliferative capacities of different cells under various culture conditions. The application of impedance sensing in wound-healing investigation was first reported by Noiri et al. [97]. They electro-permeated the confluent cell monolayer to generate wounds on the electrode using a DC current. The rate of restitution of monolayer integrity, as judged by the restoration of the electrical impedance, was monitored by an electrical impedance sensor for 20 h. Then, Keese et al. [98] improved the wound generation methods by using AC currents in the milliampere range at high frequency, so the wound was restricted to the small electrode and no electrode damage was found. This method provided highly reproducible results comparable to that observed in traditional wound-healing experiments. Wang et al. [42] modified the wound healing methods by using SAMs. The SAMs were formed on the electrodes to inhibit cell adhesion, which could effectively mimic wounds in a cell monolayer. After a DC pulse was applied, the SAMs were destroyed and cells began to migrate (Figure 16).

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus