Limits...
Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus

(a) Neuronal network derived from murine spinal cord tissue (92 days in vitro), grown on the recording matrix of a 64-electrode array plate. (Reprinted from [70]. ©2007, with permission from Elsevier) (b) Developmental changes in neuronal activity. Random bursts were observed at DIV4, tightly synchronized activity appeared at DIV11. The mature neuronal activity consisted of a complicated, high order pattern of spike-like firing and bursting at DIV45. (Reprinted from [71]. © 1996, with permission from Elsevier).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f013: (a) Neuronal network derived from murine spinal cord tissue (92 days in vitro), grown on the recording matrix of a 64-electrode array plate. (Reprinted from [70]. ©2007, with permission from Elsevier) (b) Developmental changes in neuronal activity. Random bursts were observed at DIV4, tightly synchronized activity appeared at DIV11. The mature neuronal activity consisted of a complicated, high order pattern of spike-like firing and bursting at DIV45. (Reprinted from [71]. © 1996, with permission from Elsevier).

Mentions: The dissociated neural network from mammalian tissues is an invaluable model to study learning, memory and information processing in the brain. When cultured on MEA, the spike activity from neurons can be recorded at about 5 to 7 days. A consistent bursting activity is likely to be dominant after 18 to 25 days in vitro [62], depending on the cell culture system used. Bursting stems from the regulation of the balance between intrinsic excitation and inhibition within the network. It may be related to calcium wave and sodium currents [63,64]. The synaptic connections and network topology play fundamental roles in the bursting process. Figure 13 shows the spinal cord neural networks grown on an MEA chip (Figure 13(a)) and developmental changes in neuronal activity of the cortex neural network (Figure 13(b)). Thus, excellent experimental conditions are provided for studying structural, functional development of cultured neurons and dynamic neural network.


Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

(a) Neuronal network derived from murine spinal cord tissue (92 days in vitro), grown on the recording matrix of a 64-electrode array plate. (Reprinted from [70]. ©2007, with permission from Elsevier) (b) Developmental changes in neuronal activity. Random bursts were observed at DIV4, tightly synchronized activity appeared at DIV11. The mature neuronal activity consisted of a complicated, high order pattern of spike-like firing and bursting at DIV45. (Reprinted from [71]. © 1996, with permission from Elsevier).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f013: (a) Neuronal network derived from murine spinal cord tissue (92 days in vitro), grown on the recording matrix of a 64-electrode array plate. (Reprinted from [70]. ©2007, with permission from Elsevier) (b) Developmental changes in neuronal activity. Random bursts were observed at DIV4, tightly synchronized activity appeared at DIV11. The mature neuronal activity consisted of a complicated, high order pattern of spike-like firing and bursting at DIV45. (Reprinted from [71]. © 1996, with permission from Elsevier).
Mentions: The dissociated neural network from mammalian tissues is an invaluable model to study learning, memory and information processing in the brain. When cultured on MEA, the spike activity from neurons can be recorded at about 5 to 7 days. A consistent bursting activity is likely to be dominant after 18 to 25 days in vitro [62], depending on the cell culture system used. Bursting stems from the regulation of the balance between intrinsic excitation and inhibition within the network. It may be related to calcium wave and sodium currents [63,64]. The synaptic connections and network topology play fundamental roles in the bursting process. Figure 13 shows the spinal cord neural networks grown on an MEA chip (Figure 13(a)) and developmental changes in neuronal activity of the cortex neural network (Figure 13(b)). Thus, excellent experimental conditions are provided for studying structural, functional development of cultured neurons and dynamic neural network.

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus