Limits...
Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus

Schematic diagram of the interface between biological analyte and EMIS structured sensor. (a) Redox couples functioning as mediators used to be added into samples, which usually can be Fe(III)/Fe(II) or quinhydrone; (b) Modified interface using electron transport promoter to accelerate electron transport between analyte and sensor surface, here 4-PySH is taken as an example.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f008: Schematic diagram of the interface between biological analyte and EMIS structured sensor. (a) Redox couples functioning as mediators used to be added into samples, which usually can be Fe(III)/Fe(II) or quinhydrone; (b) Modified interface using electron transport promoter to accelerate electron transport between analyte and sensor surface, here 4-PySH is taken as an example.

Mentions: It is worth mentioning that measurements of reversible, Nernst potentials are accompanied by a number of requirements, among which the most important is the need of fast electron exchange between the metal layer and the analyte. Slow electron transfer is not propitious to the formation of stable equilibrium potential, and this is responsible for the failure of potentiometric measurements of biological samples. To obtain meaningful analytic information, mediators are usually used so that stable redox potential measurements could be made. The mediators can be redox couples directly added to the samples, like Fe(III)/Fe(II) [51] or electron transport promoter, such as 4-pydidinethiol (4-PySH) and bis(4-pyridyl)disulfide [52] that are to be modified on the metal surface (Figure 8).


Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Schematic diagram of the interface between biological analyte and EMIS structured sensor. (a) Redox couples functioning as mediators used to be added into samples, which usually can be Fe(III)/Fe(II) or quinhydrone; (b) Modified interface using electron transport promoter to accelerate electron transport between analyte and sensor surface, here 4-PySH is taken as an example.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f008: Schematic diagram of the interface between biological analyte and EMIS structured sensor. (a) Redox couples functioning as mediators used to be added into samples, which usually can be Fe(III)/Fe(II) or quinhydrone; (b) Modified interface using electron transport promoter to accelerate electron transport between analyte and sensor surface, here 4-PySH is taken as an example.
Mentions: It is worth mentioning that measurements of reversible, Nernst potentials are accompanied by a number of requirements, among which the most important is the need of fast electron exchange between the metal layer and the analyte. Slow electron transfer is not propitious to the formation of stable equilibrium potential, and this is responsible for the failure of potentiometric measurements of biological samples. To obtain meaningful analytic information, mediators are usually used so that stable redox potential measurements could be made. The mediators can be redox couples directly added to the samples, like Fe(III)/Fe(II) [51] or electron transport promoter, such as 4-pydidinethiol (4-PySH) and bis(4-pyridyl)disulfide [52] that are to be modified on the metal surface (Figure 8).

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus