Limits...
Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus

The formation state of silanol (Si-OH) and silamine (Si-NH2) groups both in high and low pH conditions.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f007: The formation state of silanol (Si-OH) and silamine (Si-NH2) groups both in high and low pH conditions.

Mentions: For pH detection, a layer of Si3N4 is fabricated on the surface of LAPS. This thin layer of silicon oxynitride is used as the insulating layer that can effectively separate the silicon substrate from the electrolyte. According to the site-binding theory [30,46] which is also demonstrated in the semiconductor sensor based on field-effect [47,48], a potential difference related to H+ concentration of the electrolyte arises on the insulator (Si3N4/SiO2)-solution interface. The insulating layer interacts with protons in the solution to form groups of silanol (Si-OH) and silamine (Si-NH2). Therefore, the sensor surface potential is determined by the protons in the solution. As is shown in Figure 7, if a voltage is applied to the sensor, an electric field is formed at the silicon-insulator interface. By illuminating the rear side of the sensor, a photocurrent is generated [49]. This photocurrent corresponds to a hole-electron pair created by radiation absorption at an atomic level. Since a field potential is formed in the chip, holes and electrons move in opposite directions, resulting in the creation of local current which can be output from the backside aluminum layer.


Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

The formation state of silanol (Si-OH) and silamine (Si-NH2) groups both in high and low pH conditions.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f007: The formation state of silanol (Si-OH) and silamine (Si-NH2) groups both in high and low pH conditions.
Mentions: For pH detection, a layer of Si3N4 is fabricated on the surface of LAPS. This thin layer of silicon oxynitride is used as the insulating layer that can effectively separate the silicon substrate from the electrolyte. According to the site-binding theory [30,46] which is also demonstrated in the semiconductor sensor based on field-effect [47,48], a potential difference related to H+ concentration of the electrolyte arises on the insulator (Si3N4/SiO2)-solution interface. The insulating layer interacts with protons in the solution to form groups of silanol (Si-OH) and silamine (Si-NH2). Therefore, the sensor surface potential is determined by the protons in the solution. As is shown in Figure 7, if a voltage is applied to the sensor, an electric field is formed at the silicon-insulator interface. By illuminating the rear side of the sensor, a photocurrent is generated [49]. This photocurrent corresponds to a hole-electron pair created by radiation absorption at an atomic level. Since a field potential is formed in the chip, holes and electrons move in opposite directions, resulting in the creation of local current which can be output from the backside aluminum layer.

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus