Limits...
Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus

(a) Schematic of the measurement setup; (b,c) Monopolar electrodes: a small electrode is used as the working electrode and a larger electrode as the counter electrode. Since the ratio of the surface area of the two electrodes is over a couple of hundred, the total impedance of the system is dominated by the impedance change at the small measuring electrode; (d) Interdigitated electrodes (IDEs): a plurality of independently-operating IDE units connect to a terminal strip to form one branch of an electrode. The other identical one is parallel spaced; (e) Interdigitated electrode array with parallel lines.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f005: (a) Schematic of the measurement setup; (b,c) Monopolar electrodes: a small electrode is used as the working electrode and a larger electrode as the counter electrode. Since the ratio of the surface area of the two electrodes is over a couple of hundred, the total impedance of the system is dominated by the impedance change at the small measuring electrode; (d) Interdigitated electrodes (IDEs): a plurality of independently-operating IDE units connect to a terminal strip to form one branch of an electrode. The other identical one is parallel spaced; (e) Interdigitated electrode array with parallel lines.

Mentions: Before growth and propagation, cell adherence to substrate or surface is always the first step in a cell-based experiment. ECIS is one of the electrochemical techniques that can be applied to monitor cell adhesion, spreading, and motility in real time [39]. Figure 5 shows a schematic overview of the measurement setup pioneered by Giaever and Keese [40]. In this setup, microelectrodes are constructed beneath the cell attachment platform. An alternating current is applied on the electrodes and the voltage is monitored using a lock-in amplifier. If no cells are cultured on the surface, electric current can flow freely from the surface to the electrodes. Cells growing on the electrode will impede the current flow and thus increase the resistance of the system (measured in ohms) because cell membrane acts as an insulator. The magnitude and time course of the increase is found to become more pronounced when the cell density during seeding approaches confluence. Electrodes without any cells will produce a minimal ‘base-line’ resistance. The addition of analytes that either rupture the cell monolayer or cause disturbances will lead to changes in impedance.


Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

(a) Schematic of the measurement setup; (b,c) Monopolar electrodes: a small electrode is used as the working electrode and a larger electrode as the counter electrode. Since the ratio of the surface area of the two electrodes is over a couple of hundred, the total impedance of the system is dominated by the impedance change at the small measuring electrode; (d) Interdigitated electrodes (IDEs): a plurality of independently-operating IDE units connect to a terminal strip to form one branch of an electrode. The other identical one is parallel spaced; (e) Interdigitated electrode array with parallel lines.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f005: (a) Schematic of the measurement setup; (b,c) Monopolar electrodes: a small electrode is used as the working electrode and a larger electrode as the counter electrode. Since the ratio of the surface area of the two electrodes is over a couple of hundred, the total impedance of the system is dominated by the impedance change at the small measuring electrode; (d) Interdigitated electrodes (IDEs): a plurality of independently-operating IDE units connect to a terminal strip to form one branch of an electrode. The other identical one is parallel spaced; (e) Interdigitated electrode array with parallel lines.
Mentions: Before growth and propagation, cell adherence to substrate or surface is always the first step in a cell-based experiment. ECIS is one of the electrochemical techniques that can be applied to monitor cell adhesion, spreading, and motility in real time [39]. Figure 5 shows a schematic overview of the measurement setup pioneered by Giaever and Keese [40]. In this setup, microelectrodes are constructed beneath the cell attachment platform. An alternating current is applied on the electrodes and the voltage is monitored using a lock-in amplifier. If no cells are cultured on the surface, electric current can flow freely from the surface to the electrodes. Cells growing on the electrode will impede the current flow and thus increase the resistance of the system (measured in ohms) because cell membrane acts as an insulator. The magnitude and time course of the increase is found to become more pronounced when the cell density during seeding approaches confluence. Electrodes without any cells will produce a minimal ‘base-line’ resistance. The addition of analytes that either rupture the cell monolayer or cause disturbances will lead to changes in impedance.

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus