Limits...
Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus

The surface morphology of microelectrodes with different treatment. (a) The chip layout of a 6 × 6 microelectrode array; (b) A microelectrode sputtered with TiN (http://www.multichannelsystems.com/); (c) A microelectrode electroplated with platinum black. (Reprinted from [38]. © 1980, with permission from Elsevier).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f004: The surface morphology of microelectrodes with different treatment. (a) The chip layout of a 6 × 6 microelectrode array; (b) A microelectrode sputtered with TiN (http://www.multichannelsystems.com/); (c) A microelectrode electroplated with platinum black. (Reprinted from [38]. © 1980, with permission from Elsevier).

Mentions: Figure 4 shows a typical fabricated MEA chip. The electrode is designed to match the size of a cell, with a diameter of 10–100 μm. To reduce the electric interference between electrodes, the center-to-center distance is usually more than 100 μm. To lower the impedance and improve the performance of the electrodes, usually a TiN or platinum black layer is deposited on electrodes [37].


Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

The surface morphology of microelectrodes with different treatment. (a) The chip layout of a 6 × 6 microelectrode array; (b) A microelectrode sputtered with TiN (http://www.multichannelsystems.com/); (c) A microelectrode electroplated with platinum black. (Reprinted from [38]. © 1980, with permission from Elsevier).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f004: The surface morphology of microelectrodes with different treatment. (a) The chip layout of a 6 × 6 microelectrode array; (b) A microelectrode sputtered with TiN (http://www.multichannelsystems.com/); (c) A microelectrode electroplated with platinum black. (Reprinted from [38]. © 1980, with permission from Elsevier).
Mentions: Figure 4 shows a typical fabricated MEA chip. The electrode is designed to match the size of a cell, with a diameter of 10–100 μm. To reduce the electric interference between electrodes, the center-to-center distance is usually more than 100 μm. To lower the impedance and improve the performance of the electrodes, usually a TiN or platinum black layer is deposited on electrodes [37].

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus