Limits...
Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus

Characteristic AP signal recorded with an extracellular microelectrode as the seal resistance is varied. At low Rseal, the amplitude is small and a second derivative behavior is observed (assuming no additional derivative is generated due to the electrode itself). As Rseal increases, the amplitude of the recorded AP signal increases and the order of the derivative decreases. For extremely high Rseal, a whole-cell patch configuration is approached and the intracellular signal is measured.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f002: Characteristic AP signal recorded with an extracellular microelectrode as the seal resistance is varied. At low Rseal, the amplitude is small and a second derivative behavior is observed (assuming no additional derivative is generated due to the electrode itself). As Rseal increases, the amplitude of the recorded AP signal increases and the order of the derivative decreases. For extremely high Rseal, a whole-cell patch configuration is approached and the intracellular signal is measured.

Mentions: Accordingly, the voltage at node A is proportional to the second derivative of the transmembrane potential. This voltage is also proportional to the magnitude of Rseal [32]. The larger Rseal is, the better the recorded signal can reflect the transmembrane potential. In the extreme condition of an infinite seal resistance, the voltage at node A would correspond to the intracellular potential, thereby simulating a whole-cell patch configuration. This trend is shown in Figure 2 [32,33,34].


Microfabricated electrochemical cell-based biosensors for analysis of living cells in vitro.

Wang J, Wu C, Hu N, Zhou J, Du L, Wang P - Biosensors (Basel) (2012)

Characteristic AP signal recorded with an extracellular microelectrode as the seal resistance is varied. At low Rseal, the amplitude is small and a second derivative behavior is observed (assuming no additional derivative is generated due to the electrode itself). As Rseal increases, the amplitude of the recorded AP signal increases and the order of the derivative decreases. For extremely high Rseal, a whole-cell patch configuration is approached and the intracellular signal is measured.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263572&req=5

biosensors-02-00127-f002: Characteristic AP signal recorded with an extracellular microelectrode as the seal resistance is varied. At low Rseal, the amplitude is small and a second derivative behavior is observed (assuming no additional derivative is generated due to the electrode itself). As Rseal increases, the amplitude of the recorded AP signal increases and the order of the derivative decreases. For extremely high Rseal, a whole-cell patch configuration is approached and the intracellular signal is measured.
Mentions: Accordingly, the voltage at node A is proportional to the second derivative of the transmembrane potential. This voltage is also proportional to the magnitude of Rseal [32]. The larger Rseal is, the better the recorded signal can reflect the transmembrane potential. In the extreme condition of an infinite seal resistance, the voltage at node A would correspond to the intracellular potential, thereby simulating a whole-cell patch configuration. This trend is shown in Figure 2 [32,33,34].

Bottom Line: When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring.In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology.Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

View Article: PubMed Central - PubMed

Affiliation: Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zheda Road No. 38, Zhejiang University, Hangzhou 310027, China. wangjun-47@163.com.

ABSTRACT
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

No MeSH data available.


Related in: MedlinePlus