Limits...
Opening Study on the Development of a New Biosensor for Metal Toxicity Based on Pseudomonas fluorescens Pyoverdine.

Chiadò A, Varani L, Bosco F, Marmo L - Biosensors (Basel) (2013)

Bottom Line: To date, different kinds of biosensing elements have been used effectively for environmental monitoring.Each of these variables has been shown to influence the synthesis of siderophore: for instance, the lower the temperature, the higher the production of pyoverdine.Moreover, the concentration of pyoverdine produced in the presence of metals has been compared with the maximum allowable concentrations indicated in international regulations (e.g., 98/83/EC), and a correlation that could be useful to build a colorimetric biosensor has been observed.

View Article: PubMed Central - PubMed

Affiliation: Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy. alessandro.chiado@polito.it.

ABSTRACT
To date, different kinds of biosensing elements have been used effectively for environmental monitoring. Microbial cells seem to be well-suited for this task: they are cheap, adaptable to variable field conditions and give a measurable response to a broad number of chemicals. Among different pollutants, heavy metals are still a major problem for the environment. A reasonable starting point for the selection of a biorecognition element to develop a biosensor for metals could be that of a microorganism that exhibits good mechanisms to cope with metals. Pseudomonads are characterized by the secretion of siderophores (e.g., pyoverdine), low-molecular weight compounds that chelate Fe3+ during iron starvation. Pyoverdine is easily detected by colorimetric assay, and it is suitable for simple online measurements. In this work, in order to evaluate pyoverdine as a biorecognition element for metal detection, the influence of metal ions (Fe3+, Cu2+, Zn2+), but also of temperature, pH and nutrients, on microbial growth and pyoverdine regulation has been studied in P. fluorescens. Each of these variables has been shown to influence the synthesis of siderophore: for instance, the lower the temperature, the higher the production of pyoverdine. Moreover, the concentration of pyoverdine produced in the presence of metals has been compared with the maximum allowable concentrations indicated in international regulations (e.g., 98/83/EC), and a correlation that could be useful to build a colorimetric biosensor has been observed.

No MeSH data available.


Related in: MedlinePlus

(a) Biomass growth in cultures supplemented with CuSO4. (b) Pyoverdine biosynthesis (OD400) in cultures supplemented with CuSO4.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263567&req=5

biosensors-03-00385-f006: (a) Biomass growth in cultures supplemented with CuSO4. (b) Pyoverdine biosynthesis (OD400) in cultures supplemented with CuSO4.

Mentions: The same kind of experiment was carried out with CuSO4 and ZnSO4. As far as copper is concerned (Figure 6(a)), P. fluorescens was only able to grow in the 0–0.1 mM range of Cu2+, and each flask showed similar growth behavior (OD620 values), pH trends and carbon source consumption. The other cultures (0.95–9.5 mM of Cu2+) were inhibited completely, and no changes were in fact observed in the pH values and C concentrations. According to these results, the MIC for CuSO4 in liquid cultures is roughly three times less than that reported by Workentine et al. [35], but is similar to the one reported by Poirier et al. [30] for the strain, BA3d12 (Table 1). However, the determined MIC for ZnSO4 was higher than that reported by the previously mentioned authors: the microorganism was able to grow at each tested concentration of Zn2+, and no toxic effects were detected in the 0–2.0 mM range (Figure 7).


Opening Study on the Development of a New Biosensor for Metal Toxicity Based on Pseudomonas fluorescens Pyoverdine.

Chiadò A, Varani L, Bosco F, Marmo L - Biosensors (Basel) (2013)

(a) Biomass growth in cultures supplemented with CuSO4. (b) Pyoverdine biosynthesis (OD400) in cultures supplemented with CuSO4.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263567&req=5

biosensors-03-00385-f006: (a) Biomass growth in cultures supplemented with CuSO4. (b) Pyoverdine biosynthesis (OD400) in cultures supplemented with CuSO4.
Mentions: The same kind of experiment was carried out with CuSO4 and ZnSO4. As far as copper is concerned (Figure 6(a)), P. fluorescens was only able to grow in the 0–0.1 mM range of Cu2+, and each flask showed similar growth behavior (OD620 values), pH trends and carbon source consumption. The other cultures (0.95–9.5 mM of Cu2+) were inhibited completely, and no changes were in fact observed in the pH values and C concentrations. According to these results, the MIC for CuSO4 in liquid cultures is roughly three times less than that reported by Workentine et al. [35], but is similar to the one reported by Poirier et al. [30] for the strain, BA3d12 (Table 1). However, the determined MIC for ZnSO4 was higher than that reported by the previously mentioned authors: the microorganism was able to grow at each tested concentration of Zn2+, and no toxic effects were detected in the 0–2.0 mM range (Figure 7).

Bottom Line: To date, different kinds of biosensing elements have been used effectively for environmental monitoring.Each of these variables has been shown to influence the synthesis of siderophore: for instance, the lower the temperature, the higher the production of pyoverdine.Moreover, the concentration of pyoverdine produced in the presence of metals has been compared with the maximum allowable concentrations indicated in international regulations (e.g., 98/83/EC), and a correlation that could be useful to build a colorimetric biosensor has been observed.

View Article: PubMed Central - PubMed

Affiliation: Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy. alessandro.chiado@polito.it.

ABSTRACT
To date, different kinds of biosensing elements have been used effectively for environmental monitoring. Microbial cells seem to be well-suited for this task: they are cheap, adaptable to variable field conditions and give a measurable response to a broad number of chemicals. Among different pollutants, heavy metals are still a major problem for the environment. A reasonable starting point for the selection of a biorecognition element to develop a biosensor for metals could be that of a microorganism that exhibits good mechanisms to cope with metals. Pseudomonads are characterized by the secretion of siderophores (e.g., pyoverdine), low-molecular weight compounds that chelate Fe3+ during iron starvation. Pyoverdine is easily detected by colorimetric assay, and it is suitable for simple online measurements. In this work, in order to evaluate pyoverdine as a biorecognition element for metal detection, the influence of metal ions (Fe3+, Cu2+, Zn2+), but also of temperature, pH and nutrients, on microbial growth and pyoverdine regulation has been studied in P. fluorescens. Each of these variables has been shown to influence the synthesis of siderophore: for instance, the lower the temperature, the higher the production of pyoverdine. Moreover, the concentration of pyoverdine produced in the presence of metals has been compared with the maximum allowable concentrations indicated in international regulations (e.g., 98/83/EC), and a correlation that could be useful to build a colorimetric biosensor has been observed.

No MeSH data available.


Related in: MedlinePlus