Limits...
Recent advances in fluorescent arylboronic acids for glucose sensing.

Hansen JS, Christensen JB - Biosensors (Basel) (2013)

Bottom Line: The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures.Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution.The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark. jonhansen@chem.ku.dk.

ABSTRACT
Continuous glucose monitoring (CGM) is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

No MeSH data available.


Related in: MedlinePlus

Fluorescence intensity at 467 nm for the system after the addition of 50.0 mM of monosaccharides at pH 7.4 buffer solution. Glu = glucose, Fru = fructose, Man = mannose, Rib = ribose, Ara = arabinose, Xyl = xylose (reproduced from [73]).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263566&req=5

biosensors-03-00400-f011: Fluorescence intensity at 467 nm for the system after the addition of 50.0 mM of monosaccharides at pH 7.4 buffer solution. Glu = glucose, Fru = fructose, Man = mannose, Rib = ribose, Ara = arabinose, Xyl = xylose (reproduced from [73]).

Mentions: Polymer-based systems are interesting candidates for in vivo (diagnostics) and in vitro measurements of glucose, and a recent example of a system for diagnostics comes from Feng et al. [73], where a tridentate pyridinium boronic acid forms a non-fluorescent complex with a pyrene-containing polymeric polyelectrolyte (Figure 10 and Figure 11). The system shows some discrimination, but still, the main problem is achieving selectivity for glucose in the presence of fructose.


Recent advances in fluorescent arylboronic acids for glucose sensing.

Hansen JS, Christensen JB - Biosensors (Basel) (2013)

Fluorescence intensity at 467 nm for the system after the addition of 50.0 mM of monosaccharides at pH 7.4 buffer solution. Glu = glucose, Fru = fructose, Man = mannose, Rib = ribose, Ara = arabinose, Xyl = xylose (reproduced from [73]).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263566&req=5

biosensors-03-00400-f011: Fluorescence intensity at 467 nm for the system after the addition of 50.0 mM of monosaccharides at pH 7.4 buffer solution. Glu = glucose, Fru = fructose, Man = mannose, Rib = ribose, Ara = arabinose, Xyl = xylose (reproduced from [73]).
Mentions: Polymer-based systems are interesting candidates for in vivo (diagnostics) and in vitro measurements of glucose, and a recent example of a system for diagnostics comes from Feng et al. [73], where a tridentate pyridinium boronic acid forms a non-fluorescent complex with a pyrene-containing polymeric polyelectrolyte (Figure 10 and Figure 11). The system shows some discrimination, but still, the main problem is achieving selectivity for glucose in the presence of fructose.

Bottom Line: The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures.Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution.The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark. jonhansen@chem.ku.dk.

ABSTRACT
Continuous glucose monitoring (CGM) is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

No MeSH data available.


Related in: MedlinePlus