Limits...
Recent advances in fluorescent arylboronic acids for glucose sensing.

Hansen JS, Christensen JB - Biosensors (Basel) (2013)

Bottom Line: The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures.Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution.The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark. jonhansen@chem.ku.dk.

ABSTRACT
Continuous glucose monitoring (CGM) is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

No MeSH data available.


Related in: MedlinePlus

Cartoon representation of the different types of aggregates formed upon binding of glucose and fructose [68]. PBA, phenylboronic acid.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263566&req=5

biosensors-03-00400-f008: Cartoon representation of the different types of aggregates formed upon binding of glucose and fructose [68]. PBA, phenylboronic acid.

Mentions: An amphiphilic d-glucose selective aryl monoboronic acid sensor, 23, containing a hydrophobic pyrene unit has been reported by James and co-workers [68]. They found that high d-glucose selectivity is facilitated by the formation of a 1:2 glucose-sensor complex, which is capable of forming aggregates in an aqueous buffer. d-glucose is capable of forming a boronate diester twice, which is exploited in this system. The positively charged sensor containing a pyridinium moiety becomes zwitterionic at boronate formation, which is facilitated by d-glucose binding. The sensor displays ratiometric properties, since the wavelength of fluorescence is redshifted significantly upon aggregate formation. The redshift is explained by the exciplex formation by the stacking of pyrene units, λem = 377 nm → λem = 510 nm. Phenylboronic acid (PBA) was used as a mask for d-fructose, since d-fructose is preferentially bound by PBA. This PBA addition enhanced the d-glucose selectivity further. Sensor 23 is shown in Figure 8, along with an illustration of the different binding mode of d-glucose and d-fructose. Thus, this system outlines the stoichiometry dependence, since there is a clear discrimination between glucose and fructose. The fluorescence spectra are shown in Figure 9.


Recent advances in fluorescent arylboronic acids for glucose sensing.

Hansen JS, Christensen JB - Biosensors (Basel) (2013)

Cartoon representation of the different types of aggregates formed upon binding of glucose and fructose [68]. PBA, phenylboronic acid.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263566&req=5

biosensors-03-00400-f008: Cartoon representation of the different types of aggregates formed upon binding of glucose and fructose [68]. PBA, phenylboronic acid.
Mentions: An amphiphilic d-glucose selective aryl monoboronic acid sensor, 23, containing a hydrophobic pyrene unit has been reported by James and co-workers [68]. They found that high d-glucose selectivity is facilitated by the formation of a 1:2 glucose-sensor complex, which is capable of forming aggregates in an aqueous buffer. d-glucose is capable of forming a boronate diester twice, which is exploited in this system. The positively charged sensor containing a pyridinium moiety becomes zwitterionic at boronate formation, which is facilitated by d-glucose binding. The sensor displays ratiometric properties, since the wavelength of fluorescence is redshifted significantly upon aggregate formation. The redshift is explained by the exciplex formation by the stacking of pyrene units, λem = 377 nm → λem = 510 nm. Phenylboronic acid (PBA) was used as a mask for d-fructose, since d-fructose is preferentially bound by PBA. This PBA addition enhanced the d-glucose selectivity further. Sensor 23 is shown in Figure 8, along with an illustration of the different binding mode of d-glucose and d-fructose. Thus, this system outlines the stoichiometry dependence, since there is a clear discrimination between glucose and fructose. The fluorescence spectra are shown in Figure 9.

Bottom Line: The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures.Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution.The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark. jonhansen@chem.ku.dk.

ABSTRACT
Continuous glucose monitoring (CGM) is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

No MeSH data available.


Related in: MedlinePlus