Limits...
Recent advances in fluorescent arylboronic acids for glucose sensing.

Hansen JS, Christensen JB - Biosensors (Basel) (2013)

Bottom Line: The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures.Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution.The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark. jonhansen@chem.ku.dk.

ABSTRACT
Continuous glucose monitoring (CGM) is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

No MeSH data available.


Related in: MedlinePlus

Singaram’s viologen arylboronic acids, 15–17, employed by Feng and co-workers, using azo compound 14 as the fluorescent dye [52].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263566&req=5

biosensors-03-00400-f004: Singaram’s viologen arylboronic acids, 15–17, employed by Feng and co-workers, using azo compound 14 as the fluorescent dye [52].

Mentions: Feng and co-workers used the same two-component strategy with compounds 15–17 [52], earlier reported by Singaram and co-workers [45]. The employed fluorophore, azo compound, 14, was found to emit fluorescence with λem = 585 nm, and maximum absorbance was recorded at λ = 530 nm. A significant d-glucose response from 0.4 mM to 150 mM was found. However, no binding constant was reported. Compounds 15–17 were also used together with CdTe quantum dots, where the increase in emission intensity at 635 nm for the quantum dots was monitored upon the addition of d-glucose to a mixture of quencher and CdTe quantum dots [53]. The quenching abilities were found to decrease in the order 15 > 16 > 17. Thus, the highest increase by addition of d-glucose was found with 17. The structures of the three viologens, 15–17, and the azo compound, 14, are shown in Figure 4.


Recent advances in fluorescent arylboronic acids for glucose sensing.

Hansen JS, Christensen JB - Biosensors (Basel) (2013)

Singaram’s viologen arylboronic acids, 15–17, employed by Feng and co-workers, using azo compound 14 as the fluorescent dye [52].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263566&req=5

biosensors-03-00400-f004: Singaram’s viologen arylboronic acids, 15–17, employed by Feng and co-workers, using azo compound 14 as the fluorescent dye [52].
Mentions: Feng and co-workers used the same two-component strategy with compounds 15–17 [52], earlier reported by Singaram and co-workers [45]. The employed fluorophore, azo compound, 14, was found to emit fluorescence with λem = 585 nm, and maximum absorbance was recorded at λ = 530 nm. A significant d-glucose response from 0.4 mM to 150 mM was found. However, no binding constant was reported. Compounds 15–17 were also used together with CdTe quantum dots, where the increase in emission intensity at 635 nm for the quantum dots was monitored upon the addition of d-glucose to a mixture of quencher and CdTe quantum dots [53]. The quenching abilities were found to decrease in the order 15 > 16 > 17. Thus, the highest increase by addition of d-glucose was found with 17. The structures of the three viologens, 15–17, and the azo compound, 14, are shown in Figure 4.

Bottom Line: The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures.Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution.The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark. jonhansen@chem.ku.dk.

ABSTRACT
Continuous glucose monitoring (CGM) is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

No MeSH data available.


Related in: MedlinePlus