Limits...
Detection of Alpha-Methylacyl-CoA Racemase (AMACR), a Biomarker of Prostate Cancer, in Patient Blood Samples Using a Nanoparticle Electrochemical Biosensor.

Lin PY, Cheng KL, McGuffin-Cawley JD, Shieu FS, Samia AC, Gupta S, Cooney M, Thompson CL, Liu CC - Biosensors (Basel) (2012)

Bottom Line: However, no accurate clinically useful assay has been developed.This study reports the development of a single use, disposable biosensor for AMACR detection.Human blood samples were used to verify its validity, reproducibility and reliability.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA. ppl3@case.edu.

ABSTRACT
Although still commonly used in clinical practice to screen and diagnose prostate cancer, there are numerous weaknesses of prostate-specific antigen (PSA) testing, including lack of specificity and the inability to distinguish between aggressive and indolent cancers. A promising prostate cancer biomarker, alpha-methylacyl-CoA racemase (AMACR), has been previously demonstrated to distinguish cancer from healthy and benign prostate cells with high sensitivity and specificity. However, no accurate clinically useful assay has been developed. This study reports the development of a single use, disposable biosensor for AMACR detection. Human blood samples were used to verify its validity, reproducibility and reliability. Plasma samples from 9 healthy males, 10 patients with high grade prostatic intraepithelial neoplasia (HGPIN), and 5 prostate cancer patients were measured for AMACR levels. The average AMACR levels in the prostate cancer patients was 10 fold higher (mean(SD) = 0.077 (0.10)) than either the controls (mean(SD) = 0.005 (0.001)) or HGPIN patients (mean(SD) = 0.004 (0.0005)). At a cutoff of between 0.08 and 0.9, we are able to achieve 100% accuracy in separating prostate cancer patients from controls. Our results provide strong evidence demonstrating that this biosensor can perform as a reliable assay for prostate cancer detection and diagnosis.

No MeSH data available.


Related in: MedlinePlus

(a,b) Biosensor reading from the plasma of 24 test subjects. Samples 1–9 are from healthy men. Samples 11–20 are from men with HGPIN. Samples 21–25 are from men with prostate cancer (Gleason score 6–7). (Note: Sample 10 is not available).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263563&req=5

biosensors-02-00377-f004: (a,b) Biosensor reading from the plasma of 24 test subjects. Samples 1–9 are from healthy men. Samples 11–20 are from men with HGPIN. Samples 21–25 are from men with prostate cancer (Gleason score 6–7). (Note: Sample 10 is not available).

Mentions: Figure 4 shows the level of AMACR as measured by our biosensor for each sample. As illustrated in Figure 4(a), using a current level cutoff of anywhere between 0.08 and 0.90 would provide 100% sensitivity and 100% specificity to separate the prostate cancer cases from the other patients. Thus, in our preliminary data, the accuracy of this test is 100%.


Detection of Alpha-Methylacyl-CoA Racemase (AMACR), a Biomarker of Prostate Cancer, in Patient Blood Samples Using a Nanoparticle Electrochemical Biosensor.

Lin PY, Cheng KL, McGuffin-Cawley JD, Shieu FS, Samia AC, Gupta S, Cooney M, Thompson CL, Liu CC - Biosensors (Basel) (2012)

(a,b) Biosensor reading from the plasma of 24 test subjects. Samples 1–9 are from healthy men. Samples 11–20 are from men with HGPIN. Samples 21–25 are from men with prostate cancer (Gleason score 6–7). (Note: Sample 10 is not available).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263563&req=5

biosensors-02-00377-f004: (a,b) Biosensor reading from the plasma of 24 test subjects. Samples 1–9 are from healthy men. Samples 11–20 are from men with HGPIN. Samples 21–25 are from men with prostate cancer (Gleason score 6–7). (Note: Sample 10 is not available).
Mentions: Figure 4 shows the level of AMACR as measured by our biosensor for each sample. As illustrated in Figure 4(a), using a current level cutoff of anywhere between 0.08 and 0.90 would provide 100% sensitivity and 100% specificity to separate the prostate cancer cases from the other patients. Thus, in our preliminary data, the accuracy of this test is 100%.

Bottom Line: However, no accurate clinically useful assay has been developed.This study reports the development of a single use, disposable biosensor for AMACR detection.Human blood samples were used to verify its validity, reproducibility and reliability.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA. ppl3@case.edu.

ABSTRACT
Although still commonly used in clinical practice to screen and diagnose prostate cancer, there are numerous weaknesses of prostate-specific antigen (PSA) testing, including lack of specificity and the inability to distinguish between aggressive and indolent cancers. A promising prostate cancer biomarker, alpha-methylacyl-CoA racemase (AMACR), has been previously demonstrated to distinguish cancer from healthy and benign prostate cells with high sensitivity and specificity. However, no accurate clinically useful assay has been developed. This study reports the development of a single use, disposable biosensor for AMACR detection. Human blood samples were used to verify its validity, reproducibility and reliability. Plasma samples from 9 healthy males, 10 patients with high grade prostatic intraepithelial neoplasia (HGPIN), and 5 prostate cancer patients were measured for AMACR levels. The average AMACR levels in the prostate cancer patients was 10 fold higher (mean(SD) = 0.077 (0.10)) than either the controls (mean(SD) = 0.005 (0.001)) or HGPIN patients (mean(SD) = 0.004 (0.0005)). At a cutoff of between 0.08 and 0.9, we are able to achieve 100% accuracy in separating prostate cancer patients from controls. Our results provide strong evidence demonstrating that this biosensor can perform as a reliable assay for prostate cancer detection and diagnosis.

No MeSH data available.


Related in: MedlinePlus