Limits...
Detection of Alpha-Methylacyl-CoA Racemase (AMACR), a Biomarker of Prostate Cancer, in Patient Blood Samples Using a Nanoparticle Electrochemical Biosensor.

Lin PY, Cheng KL, McGuffin-Cawley JD, Shieu FS, Samia AC, Gupta S, Cooney M, Thompson CL, Liu CC - Biosensors (Basel) (2012)

Bottom Line: However, no accurate clinically useful assay has been developed.This study reports the development of a single use, disposable biosensor for AMACR detection.Human blood samples were used to verify its validity, reproducibility and reliability.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA. ppl3@case.edu.

ABSTRACT
Although still commonly used in clinical practice to screen and diagnose prostate cancer, there are numerous weaknesses of prostate-specific antigen (PSA) testing, including lack of specificity and the inability to distinguish between aggressive and indolent cancers. A promising prostate cancer biomarker, alpha-methylacyl-CoA racemase (AMACR), has been previously demonstrated to distinguish cancer from healthy and benign prostate cells with high sensitivity and specificity. However, no accurate clinically useful assay has been developed. This study reports the development of a single use, disposable biosensor for AMACR detection. Human blood samples were used to verify its validity, reproducibility and reliability. Plasma samples from 9 healthy males, 10 patients with high grade prostatic intraepithelial neoplasia (HGPIN), and 5 prostate cancer patients were measured for AMACR levels. The average AMACR levels in the prostate cancer patients was 10 fold higher (mean(SD) = 0.077 (0.10)) than either the controls (mean(SD) = 0.005 (0.001)) or HGPIN patients (mean(SD) = 0.004 (0.0005)). At a cutoff of between 0.08 and 0.9, we are able to achieve 100% accuracy in separating prostate cancer patients from controls. Our results provide strong evidence demonstrating that this biosensor can perform as a reliable assay for prostate cancer detection and diagnosis.

No MeSH data available.


Related in: MedlinePlus

Screen-printed single-use, disposable Ir nano-catalyst contained H2O2 platform biosensor prototype.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263563&req=5

biosensors-02-00377-f002: Screen-printed single-use, disposable Ir nano-catalyst contained H2O2 platform biosensor prototype.

Mentions: This biosensor was thick film printed on 0.18 mm thick polyethylene terephalate (PET) substrate (Melinex 329, DuPont Co.) in the dimension of 385 × 280 mm2. The cost of this thick film process was relatively low, and 150 individual biosensors were produced in 6 rows per sheet. The biosensor had a three-electrode configuration: working, counter and reference electrode. Both the working and counter electrodes were printed with nano-particle of iridium (actually IrO) contained active carbon power (RC72), which was mixed into a thick-film printing ink. The reference electrode was also a thick film printed Ag/AgCl electrode using DuPont #5870 Ag/AgCl thick film ink. The insulation layer was thick-film printed using Nazdar APL 34 silicone-free dielectric ink (colored in green in Figure 2), which also defined the dimensions of the individual biosensor. The working electrode was approximately 0.8 mm2 with a diameter of 1.0 mm. The biosensor could accommodate 10–20 micro-liter of test volume. Other electrocatalysts have been tested and evaluated in addition to IrO nano-catalyst. However, the test results are not suitable to be discussed here. We will report only the use of IrO nano-catalyst in this study which provides most promising results. It must be recognized that because this biosensor prototype was fabricated by thick-film printing technology, the manufacturing cost can be relatively low thereby making a single use, disposable biosensor a reality. However, thick film printing technology has an inherent accuracy limitation of 10%. Therefore, this limitation must be included in the consideration of the biosensor measurement.


Detection of Alpha-Methylacyl-CoA Racemase (AMACR), a Biomarker of Prostate Cancer, in Patient Blood Samples Using a Nanoparticle Electrochemical Biosensor.

Lin PY, Cheng KL, McGuffin-Cawley JD, Shieu FS, Samia AC, Gupta S, Cooney M, Thompson CL, Liu CC - Biosensors (Basel) (2012)

Screen-printed single-use, disposable Ir nano-catalyst contained H2O2 platform biosensor prototype.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263563&req=5

biosensors-02-00377-f002: Screen-printed single-use, disposable Ir nano-catalyst contained H2O2 platform biosensor prototype.
Mentions: This biosensor was thick film printed on 0.18 mm thick polyethylene terephalate (PET) substrate (Melinex 329, DuPont Co.) in the dimension of 385 × 280 mm2. The cost of this thick film process was relatively low, and 150 individual biosensors were produced in 6 rows per sheet. The biosensor had a three-electrode configuration: working, counter and reference electrode. Both the working and counter electrodes were printed with nano-particle of iridium (actually IrO) contained active carbon power (RC72), which was mixed into a thick-film printing ink. The reference electrode was also a thick film printed Ag/AgCl electrode using DuPont #5870 Ag/AgCl thick film ink. The insulation layer was thick-film printed using Nazdar APL 34 silicone-free dielectric ink (colored in green in Figure 2), which also defined the dimensions of the individual biosensor. The working electrode was approximately 0.8 mm2 with a diameter of 1.0 mm. The biosensor could accommodate 10–20 micro-liter of test volume. Other electrocatalysts have been tested and evaluated in addition to IrO nano-catalyst. However, the test results are not suitable to be discussed here. We will report only the use of IrO nano-catalyst in this study which provides most promising results. It must be recognized that because this biosensor prototype was fabricated by thick-film printing technology, the manufacturing cost can be relatively low thereby making a single use, disposable biosensor a reality. However, thick film printing technology has an inherent accuracy limitation of 10%. Therefore, this limitation must be included in the consideration of the biosensor measurement.

Bottom Line: However, no accurate clinically useful assay has been developed.This study reports the development of a single use, disposable biosensor for AMACR detection.Human blood samples were used to verify its validity, reproducibility and reliability.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA. ppl3@case.edu.

ABSTRACT
Although still commonly used in clinical practice to screen and diagnose prostate cancer, there are numerous weaknesses of prostate-specific antigen (PSA) testing, including lack of specificity and the inability to distinguish between aggressive and indolent cancers. A promising prostate cancer biomarker, alpha-methylacyl-CoA racemase (AMACR), has been previously demonstrated to distinguish cancer from healthy and benign prostate cells with high sensitivity and specificity. However, no accurate clinically useful assay has been developed. This study reports the development of a single use, disposable biosensor for AMACR detection. Human blood samples were used to verify its validity, reproducibility and reliability. Plasma samples from 9 healthy males, 10 patients with high grade prostatic intraepithelial neoplasia (HGPIN), and 5 prostate cancer patients were measured for AMACR levels. The average AMACR levels in the prostate cancer patients was 10 fold higher (mean(SD) = 0.077 (0.10)) than either the controls (mean(SD) = 0.005 (0.001)) or HGPIN patients (mean(SD) = 0.004 (0.0005)). At a cutoff of between 0.08 and 0.9, we are able to achieve 100% accuracy in separating prostate cancer patients from controls. Our results provide strong evidence demonstrating that this biosensor can perform as a reliable assay for prostate cancer detection and diagnosis.

No MeSH data available.


Related in: MedlinePlus