Limits...
A New Approach for Detection Improvement of the Creutzfeldt-Jakob Disorder through a Specific Surface Chemistry Applied onto Titration Well.

Mille C, Debarnot D, Zorzi W, Moualij BE, Quadrio I, Perret-Liaudet A, Coudreuse A, Legeay G, Poncin-Epaillard F - Biosensors (Basel) (2012)

Bottom Line: It is achieved thanks to the association of plasma chemistry and coating with different amphiphilic molecules bearing either ionic charges and/or long hydrocarbon chains.The treated support by 3-butenylamine hydrochloride improves the signal detection of recombinant protein, while surface modification with the 3,7-dimethylocta-2,6-dien-1-diamine (geranylamine) enhances the sensitivity of the native protein.Beside the surface chemistry effect, these different results are associated with protein conformation.

View Article: PubMed Central - PubMed

Affiliation: Université, UMR Université du Maine, CNRS n°6283, Institut des Molécules et Matériaux du Mans, Département Polymères, Colloïdes et Interfaces, av. O. Messiaen, 72085 Le Mans, France. caroline.mille.etu@univ-lemans.fr.

ABSTRACT
This work illustrates the enhancement of the sensitivity of the ELISA titration for recombinant human and native prion proteins, while reducing other non-specific adsorptions that could increase the background signal and lead to a low sensitivity and false positives. It is achieved thanks to the association of plasma chemistry and coating with different amphiphilic molecules bearing either ionic charges and/or long hydrocarbon chains. The treated support by 3-butenylamine hydrochloride improves the signal detection of recombinant protein, while surface modification with the 3,7-dimethylocta-2,6-dien-1-diamine (geranylamine) enhances the sensitivity of the native protein. Beside the surface chemistry effect, these different results are associated with protein conformation.

No MeSH data available.


Evaluation of aging on the detection of PrPrechum protein with different surface chemistries of PP wells.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263562&req=5

biosensors-02-00433-f003: Evaluation of aging on the detection of PrPrechum protein with different surface chemistries of PP wells.

Mentions: The physicochemical properties were previously verified, and it was shown that PP-T3 is the only surface that is aging. Accordingly, a series of eight samples for each treatment, T1, T2 and T3, was carried out followed by measurement of the contact angle each week during two months. The contact angles of PP-T1 and PP-T2 vary little over time. T1 treatment gives rise to an average value of the contact angle of 34° ± 1.8°, and T2 treatment a contact angle of 36° ± 0.8°. They, therefore, have both a very good stability over time. In contrast, the aging of treatment T3 has a drift over time, particularly after five weeks. The deposition of thin films seems to deteriorate over time. It is confirmed by the averaged values of contact angles that the error is significant: 49° ± 3.6°. In addition, aging of coatings were also evaluated in enzyme immunoassay detection in order to confirm the results obtained before. Figure 3 shows that the aging of materials vis-à-vis the detection of PrPrechum at various concentrations over a period of eight months, expressed as the optical density at zero, three, six and eight months of aging. The results show that the optical density analysis performed on the T3 support decreases over time, from 1.118 a.u. to 0.700 a.u. for the concentrations of 25 and 50 ng∙mL–1, respectively. Functional T1 and T2 show negligible loss of signal detection. These results are consistent with those obtained by contact angle measurements, showing an increase of hydrophobicity of surfaces treated with T3, while the other two treatments remain stable over time. This could explain the reduction in the detection of proteins. Since all biomolecules have a large number of possible conformations that occur depending on their environment, a more pronounced hydrophobic character would induce a new conformation and a lower affinity of the capture antibody towards the well surface, which results in a loss in detection.


A New Approach for Detection Improvement of the Creutzfeldt-Jakob Disorder through a Specific Surface Chemistry Applied onto Titration Well.

Mille C, Debarnot D, Zorzi W, Moualij BE, Quadrio I, Perret-Liaudet A, Coudreuse A, Legeay G, Poncin-Epaillard F - Biosensors (Basel) (2012)

Evaluation of aging on the detection of PrPrechum protein with different surface chemistries of PP wells.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263562&req=5

biosensors-02-00433-f003: Evaluation of aging on the detection of PrPrechum protein with different surface chemistries of PP wells.
Mentions: The physicochemical properties were previously verified, and it was shown that PP-T3 is the only surface that is aging. Accordingly, a series of eight samples for each treatment, T1, T2 and T3, was carried out followed by measurement of the contact angle each week during two months. The contact angles of PP-T1 and PP-T2 vary little over time. T1 treatment gives rise to an average value of the contact angle of 34° ± 1.8°, and T2 treatment a contact angle of 36° ± 0.8°. They, therefore, have both a very good stability over time. In contrast, the aging of treatment T3 has a drift over time, particularly after five weeks. The deposition of thin films seems to deteriorate over time. It is confirmed by the averaged values of contact angles that the error is significant: 49° ± 3.6°. In addition, aging of coatings were also evaluated in enzyme immunoassay detection in order to confirm the results obtained before. Figure 3 shows that the aging of materials vis-à-vis the detection of PrPrechum at various concentrations over a period of eight months, expressed as the optical density at zero, three, six and eight months of aging. The results show that the optical density analysis performed on the T3 support decreases over time, from 1.118 a.u. to 0.700 a.u. for the concentrations of 25 and 50 ng∙mL–1, respectively. Functional T1 and T2 show negligible loss of signal detection. These results are consistent with those obtained by contact angle measurements, showing an increase of hydrophobicity of surfaces treated with T3, while the other two treatments remain stable over time. This could explain the reduction in the detection of proteins. Since all biomolecules have a large number of possible conformations that occur depending on their environment, a more pronounced hydrophobic character would induce a new conformation and a lower affinity of the capture antibody towards the well surface, which results in a loss in detection.

Bottom Line: It is achieved thanks to the association of plasma chemistry and coating with different amphiphilic molecules bearing either ionic charges and/or long hydrocarbon chains.The treated support by 3-butenylamine hydrochloride improves the signal detection of recombinant protein, while surface modification with the 3,7-dimethylocta-2,6-dien-1-diamine (geranylamine) enhances the sensitivity of the native protein.Beside the surface chemistry effect, these different results are associated with protein conformation.

View Article: PubMed Central - PubMed

Affiliation: Université, UMR Université du Maine, CNRS n°6283, Institut des Molécules et Matériaux du Mans, Département Polymères, Colloïdes et Interfaces, av. O. Messiaen, 72085 Le Mans, France. caroline.mille.etu@univ-lemans.fr.

ABSTRACT
This work illustrates the enhancement of the sensitivity of the ELISA titration for recombinant human and native prion proteins, while reducing other non-specific adsorptions that could increase the background signal and lead to a low sensitivity and false positives. It is achieved thanks to the association of plasma chemistry and coating with different amphiphilic molecules bearing either ionic charges and/or long hydrocarbon chains. The treated support by 3-butenylamine hydrochloride improves the signal detection of recombinant protein, while surface modification with the 3,7-dimethylocta-2,6-dien-1-diamine (geranylamine) enhances the sensitivity of the native protein. Beside the surface chemistry effect, these different results are associated with protein conformation.

No MeSH data available.