Limits...
A facile inhibitor screening of hepatitis C virus NS3 protein using nanoparticle-based RNA.

Roh C - Biosensors (Basel) (2012)

Bottom Line: We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide can recognize the hepatitis C virus NS3 protein specifically and sensitively.Both 7,8,4'-trihydroxyisoflavone and 6,7,4'-trihydroxyisoflavone attenuated the binding affinity in a concentrated manner as evidenced by QDs conjugated RNA oligonucleotide.At a concentration of 0.01 μg·mL-1, 7,8,4'-trihydroxyisoflavone and 6,7,4'-trihydroxyisoflavone showed more than a 30% inhibition activity of a nanoparticle-based RNA oligonucleotide biochip system.

View Article: PubMed Central - PubMed

Affiliation: Division of Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 1266, Sinjeong-dong, Jeongeup, Jeonbuk 580-185, Korea. chroh@kaeri.re.kr.

ABSTRACT
Globally, over hundreds of million people are infected with the hepatitis C virus: the global rate of death as a direct result of the hepatitis C virus has increased remarkably. For this reason, the development of efficient drug treatments for the biological effects of the hepatitis C virus is highly necessary. We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide can recognize the hepatitis C virus NS3 protein specifically and sensitively. In this study, we elucidated that this biochip can analyze inhibitors to the hepatitis C virus NS3 protein using a nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, 7,8,4'-trihydroxyisoflavone and 6,7,4'-trihydroxyisoflavone demonstrated a remarkable inhibition activity on the hepatitis C virus NS3 protein. Both 7,8,4'-trihydroxyisoflavone and 6,7,4'-trihydroxyisoflavone attenuated the binding affinity in a concentrated manner as evidenced by QDs conjugated RNA oligonucleotide. At a concentration of 0.01 μg·mL-1, 7,8,4'-trihydroxyisoflavone and 6,7,4'-trihydroxyisoflavone showed more than a 30% inhibition activity of a nanoparticle-based RNA oligonucleotide biochip system.

No MeSH data available.


Related in: MedlinePlus

A representative scheme for the inhibitor screening of hepatitis c virus NS3protein using nanoparticle-conjugated RNA oligonucleotide on biochip.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263559&req=5

biosensors-02-00427-f001: A representative scheme for the inhibitor screening of hepatitis c virus NS3protein using nanoparticle-conjugated RNA oligonucleotide on biochip.

Mentions: For the inhibitor screening of the hepatitis C virus NS3 protein, we designed the QDs-conjugated specific RNA oligonucleotide for specific hepatitis C virus NS3 protein targeting: first, the hepatitis C virus NS3 protein (1 μL) was immobilized on a glass chip; second, QDs-conjugated RNA oligonucleotide conjugates (1 μL) were bound on an immobilized chip; third, inhibitor treatment was performed on the conjugated RNA oligonucleotide and hepatitis C virus NS3 protein; fourth, washing and unspecific binding removal was done; fifth, detection was achieved to show directly the specific recognition of the inhibition effect of hepatitis C virus NS3 protein on the biochip. The schematic design of the inhibitor screening for effective monitoring of hepatitis C virus NS3 protein is illustrated in Figure 1. To accomplish the feasibility of targeting and imaging, we used QD605 conjugates having an RNA oligonucleotide for hepatitis C virus NS3 protein with an emission wavelength as the optical imaging probe.


A facile inhibitor screening of hepatitis C virus NS3 protein using nanoparticle-based RNA.

Roh C - Biosensors (Basel) (2012)

A representative scheme for the inhibitor screening of hepatitis c virus NS3protein using nanoparticle-conjugated RNA oligonucleotide on biochip.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263559&req=5

biosensors-02-00427-f001: A representative scheme for the inhibitor screening of hepatitis c virus NS3protein using nanoparticle-conjugated RNA oligonucleotide on biochip.
Mentions: For the inhibitor screening of the hepatitis C virus NS3 protein, we designed the QDs-conjugated specific RNA oligonucleotide for specific hepatitis C virus NS3 protein targeting: first, the hepatitis C virus NS3 protein (1 μL) was immobilized on a glass chip; second, QDs-conjugated RNA oligonucleotide conjugates (1 μL) were bound on an immobilized chip; third, inhibitor treatment was performed on the conjugated RNA oligonucleotide and hepatitis C virus NS3 protein; fourth, washing and unspecific binding removal was done; fifth, detection was achieved to show directly the specific recognition of the inhibition effect of hepatitis C virus NS3 protein on the biochip. The schematic design of the inhibitor screening for effective monitoring of hepatitis C virus NS3 protein is illustrated in Figure 1. To accomplish the feasibility of targeting and imaging, we used QD605 conjugates having an RNA oligonucleotide for hepatitis C virus NS3 protein with an emission wavelength as the optical imaging probe.

Bottom Line: We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide can recognize the hepatitis C virus NS3 protein specifically and sensitively.Both 7,8,4'-trihydroxyisoflavone and 6,7,4'-trihydroxyisoflavone attenuated the binding affinity in a concentrated manner as evidenced by QDs conjugated RNA oligonucleotide.At a concentration of 0.01 μg·mL-1, 7,8,4'-trihydroxyisoflavone and 6,7,4'-trihydroxyisoflavone showed more than a 30% inhibition activity of a nanoparticle-based RNA oligonucleotide biochip system.

View Article: PubMed Central - PubMed

Affiliation: Division of Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 1266, Sinjeong-dong, Jeongeup, Jeonbuk 580-185, Korea. chroh@kaeri.re.kr.

ABSTRACT
Globally, over hundreds of million people are infected with the hepatitis C virus: the global rate of death as a direct result of the hepatitis C virus has increased remarkably. For this reason, the development of efficient drug treatments for the biological effects of the hepatitis C virus is highly necessary. We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide can recognize the hepatitis C virus NS3 protein specifically and sensitively. In this study, we elucidated that this biochip can analyze inhibitors to the hepatitis C virus NS3 protein using a nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, 7,8,4'-trihydroxyisoflavone and 6,7,4'-trihydroxyisoflavone demonstrated a remarkable inhibition activity on the hepatitis C virus NS3 protein. Both 7,8,4'-trihydroxyisoflavone and 6,7,4'-trihydroxyisoflavone attenuated the binding affinity in a concentrated manner as evidenced by QDs conjugated RNA oligonucleotide. At a concentration of 0.01 μg·mL-1, 7,8,4'-trihydroxyisoflavone and 6,7,4'-trihydroxyisoflavone showed more than a 30% inhibition activity of a nanoparticle-based RNA oligonucleotide biochip system.

No MeSH data available.


Related in: MedlinePlus