Limits...
Synthesis of a functionalized polypyrrole coated electrotextile for use in biosensors.

McGraw SK, Alocilja E, Senecal A, Senecal K - Biosensors (Basel) (2012)

Bottom Line: The effects of dopant inclusion and post-polymerization wash steps were also analyzed.The initial results show a nonwoven fiber matrix can be successfully coated in a conductive, functionalized polymer while still maintaining surface area and fiber durability.The immobilized avidin was then successfully used to capture biotin.

View Article: PubMed Central - PubMed

Affiliation: Biosystems and Agricultural Engineering, Michigan State University, 524 S. Shaw Lane, 115 Farrall Hall, East Lansing, MI 48824, USA. andre.g.senecal.civ@mail.mil.

ABSTRACT
An electrotextile with a biosensing focus composed of conductive polymer coated microfibers that contain functional attachment sites for biorecognition elements was developed. Experiments were conducted to select a compound with a pendant functional group for inclusion in the polymer, a fiber platform, and polymerization solvent. The effects of dopant inclusion and post-polymerization wash steps were also analyzed. Finally, the successful attachment of avidin, which was then used to capture biotin, to the electrotextile was achieved. The initial results show a nonwoven fiber matrix can be successfully coated in a conductive, functionalized polymer while still maintaining surface area and fiber durability. A polypropylene fiber platform with a conductive polypyrrole coating using iron (III) chloride as an oxidant, water as a solvent, and 5-sulfosalicylic acid as a dopant exhibited the best coating consistency, material durability, and lowest resistance. Biological attachment of avidin was achieved on the fibers through the inclusion of a carboxyl functional group via 3-thiopheneacetic acid in the monomer. The immobilized avidin was then successfully used to capture biotin. This was confirmed through the use of fluorescent quantum dots and confocal microscopy. A preliminary electrochemical experiment using avidin for biotin detection was conducted. This technology will be extremely useful in the formation of electrotextiles for use in biosensor systems.

No MeSH data available.


SEM images of nylon 6 vs. polypropylene fibers coated in doped polypyrrole. (A) Nylon 6. (B) Polypropylene. Both at 5,000×.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263555&req=5

biosensors-02-00465-f004: SEM images of nylon 6 vs. polypropylene fibers coated in doped polypyrrole. (A) Nylon 6. (B) Polypropylene. Both at 5,000×.

Mentions: During drying the nylon coated fibers contracted, resulting in the disc becoming slightly smaller in diameter than before polymerization occurred. The coated fibers also became more brittle, occasionally fracturing when bent or twisted. To address this effect, a spot melted polypropylene disc, a more robust material, was coated with the polypyrrole conductive polymer using the procedure described in Section 2.2.4 in a 30 min reaction and compared to an identically coated nylon 6 membrane. After being washed with DI water SEM images of the samples were taken. These results can be seen in Table 1 and Figure 4.


Synthesis of a functionalized polypyrrole coated electrotextile for use in biosensors.

McGraw SK, Alocilja E, Senecal A, Senecal K - Biosensors (Basel) (2012)

SEM images of nylon 6 vs. polypropylene fibers coated in doped polypyrrole. (A) Nylon 6. (B) Polypropylene. Both at 5,000×.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263555&req=5

biosensors-02-00465-f004: SEM images of nylon 6 vs. polypropylene fibers coated in doped polypyrrole. (A) Nylon 6. (B) Polypropylene. Both at 5,000×.
Mentions: During drying the nylon coated fibers contracted, resulting in the disc becoming slightly smaller in diameter than before polymerization occurred. The coated fibers also became more brittle, occasionally fracturing when bent or twisted. To address this effect, a spot melted polypropylene disc, a more robust material, was coated with the polypyrrole conductive polymer using the procedure described in Section 2.2.4 in a 30 min reaction and compared to an identically coated nylon 6 membrane. After being washed with DI water SEM images of the samples were taken. These results can be seen in Table 1 and Figure 4.

Bottom Line: The effects of dopant inclusion and post-polymerization wash steps were also analyzed.The initial results show a nonwoven fiber matrix can be successfully coated in a conductive, functionalized polymer while still maintaining surface area and fiber durability.The immobilized avidin was then successfully used to capture biotin.

View Article: PubMed Central - PubMed

Affiliation: Biosystems and Agricultural Engineering, Michigan State University, 524 S. Shaw Lane, 115 Farrall Hall, East Lansing, MI 48824, USA. andre.g.senecal.civ@mail.mil.

ABSTRACT
An electrotextile with a biosensing focus composed of conductive polymer coated microfibers that contain functional attachment sites for biorecognition elements was developed. Experiments were conducted to select a compound with a pendant functional group for inclusion in the polymer, a fiber platform, and polymerization solvent. The effects of dopant inclusion and post-polymerization wash steps were also analyzed. Finally, the successful attachment of avidin, which was then used to capture biotin, to the electrotextile was achieved. The initial results show a nonwoven fiber matrix can be successfully coated in a conductive, functionalized polymer while still maintaining surface area and fiber durability. A polypropylene fiber platform with a conductive polypyrrole coating using iron (III) chloride as an oxidant, water as a solvent, and 5-sulfosalicylic acid as a dopant exhibited the best coating consistency, material durability, and lowest resistance. Biological attachment of avidin was achieved on the fibers through the inclusion of a carboxyl functional group via 3-thiopheneacetic acid in the monomer. The immobilized avidin was then successfully used to capture biotin. This was confirmed through the use of fluorescent quantum dots and confocal microscopy. A preliminary electrochemical experiment using avidin for biotin detection was conducted. This technology will be extremely useful in the formation of electrotextiles for use in biosensor systems.

No MeSH data available.