Limits...
Synthesis of a functionalized polypyrrole coated electrotextile for use in biosensors.

McGraw SK, Alocilja E, Senecal A, Senecal K - Biosensors (Basel) (2012)

Bottom Line: The effects of dopant inclusion and post-polymerization wash steps were also analyzed.The initial results show a nonwoven fiber matrix can be successfully coated in a conductive, functionalized polymer while still maintaining surface area and fiber durability.The immobilized avidin was then successfully used to capture biotin.

View Article: PubMed Central - PubMed

Affiliation: Biosystems and Agricultural Engineering, Michigan State University, 524 S. Shaw Lane, 115 Farrall Hall, East Lansing, MI 48824, USA. andre.g.senecal.civ@mail.mil.

ABSTRACT
An electrotextile with a biosensing focus composed of conductive polymer coated microfibers that contain functional attachment sites for biorecognition elements was developed. Experiments were conducted to select a compound with a pendant functional group for inclusion in the polymer, a fiber platform, and polymerization solvent. The effects of dopant inclusion and post-polymerization wash steps were also analyzed. Finally, the successful attachment of avidin, which was then used to capture biotin, to the electrotextile was achieved. The initial results show a nonwoven fiber matrix can be successfully coated in a conductive, functionalized polymer while still maintaining surface area and fiber durability. A polypropylene fiber platform with a conductive polypyrrole coating using iron (III) chloride as an oxidant, water as a solvent, and 5-sulfosalicylic acid as a dopant exhibited the best coating consistency, material durability, and lowest resistance. Biological attachment of avidin was achieved on the fibers through the inclusion of a carboxyl functional group via 3-thiopheneacetic acid in the monomer. The immobilized avidin was then successfully used to capture biotin. This was confirmed through the use of fluorescent quantum dots and confocal microscopy. A preliminary electrochemical experiment using avidin for biotin detection was conducted. This technology will be extremely useful in the formation of electrotextiles for use in biosensor systems.

No MeSH data available.


Related in: MedlinePlus

SEM images of nylon 6 fibers coated in doped polypyrrole, with methanol and water as solvents. (A) Methanol solvent, 2,000× magnification. (B) Water solvent, 2,000× magnification.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263555&req=5

biosensors-02-00465-f002: SEM images of nylon 6 fibers coated in doped polypyrrole, with methanol and water as solvents. (A) Methanol solvent, 2,000× magnification. (B) Water solvent, 2,000× magnification.

Mentions: The samples containing 5SSA that were oxidized in methanol and in water were selected for further evaluation using an SEM. These images can be seen in Figure 2. The sample oxidized using methanol has a less globular appearance than previously seen in the acetonitrile samples without the dopant, however it appears more like a solid sheet of coating across the fibers. In comparison, the samples that were oxidized in water are very globular, the polymer clusters seen previously are present, but much smaller and building along each individual fiber.


Synthesis of a functionalized polypyrrole coated electrotextile for use in biosensors.

McGraw SK, Alocilja E, Senecal A, Senecal K - Biosensors (Basel) (2012)

SEM images of nylon 6 fibers coated in doped polypyrrole, with methanol and water as solvents. (A) Methanol solvent, 2,000× magnification. (B) Water solvent, 2,000× magnification.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263555&req=5

biosensors-02-00465-f002: SEM images of nylon 6 fibers coated in doped polypyrrole, with methanol and water as solvents. (A) Methanol solvent, 2,000× magnification. (B) Water solvent, 2,000× magnification.
Mentions: The samples containing 5SSA that were oxidized in methanol and in water were selected for further evaluation using an SEM. These images can be seen in Figure 2. The sample oxidized using methanol has a less globular appearance than previously seen in the acetonitrile samples without the dopant, however it appears more like a solid sheet of coating across the fibers. In comparison, the samples that were oxidized in water are very globular, the polymer clusters seen previously are present, but much smaller and building along each individual fiber.

Bottom Line: The effects of dopant inclusion and post-polymerization wash steps were also analyzed.The initial results show a nonwoven fiber matrix can be successfully coated in a conductive, functionalized polymer while still maintaining surface area and fiber durability.The immobilized avidin was then successfully used to capture biotin.

View Article: PubMed Central - PubMed

Affiliation: Biosystems and Agricultural Engineering, Michigan State University, 524 S. Shaw Lane, 115 Farrall Hall, East Lansing, MI 48824, USA. andre.g.senecal.civ@mail.mil.

ABSTRACT
An electrotextile with a biosensing focus composed of conductive polymer coated microfibers that contain functional attachment sites for biorecognition elements was developed. Experiments were conducted to select a compound with a pendant functional group for inclusion in the polymer, a fiber platform, and polymerization solvent. The effects of dopant inclusion and post-polymerization wash steps were also analyzed. Finally, the successful attachment of avidin, which was then used to capture biotin, to the electrotextile was achieved. The initial results show a nonwoven fiber matrix can be successfully coated in a conductive, functionalized polymer while still maintaining surface area and fiber durability. A polypropylene fiber platform with a conductive polypyrrole coating using iron (III) chloride as an oxidant, water as a solvent, and 5-sulfosalicylic acid as a dopant exhibited the best coating consistency, material durability, and lowest resistance. Biological attachment of avidin was achieved on the fibers through the inclusion of a carboxyl functional group via 3-thiopheneacetic acid in the monomer. The immobilized avidin was then successfully used to capture biotin. This was confirmed through the use of fluorescent quantum dots and confocal microscopy. A preliminary electrochemical experiment using avidin for biotin detection was conducted. This technology will be extremely useful in the formation of electrotextiles for use in biosensor systems.

No MeSH data available.


Related in: MedlinePlus