Limits...
DNA/RNA Detection Using DNA-Templated Few-Atom Silver Nanoclusters.

Obliosca JM, Liu C, Batson RA, Babin MC, Werner JH, Yeh HC - Biosensors (Basel) (2013)

Bottom Line: Compared to quantum dots, DNA/Ag NCs are smaller, less prone to blinking on long timescales, and do not have a toxic core.Many other groups have also explored and taken advantage of the environment sensitivities of DNA/Ag NCs in creating new tools for DNA/RNA detection and single-nucleotide polymorphism identification.In this review, we summarize the recent trends in the use of DNA/Ag NCs for developing DNA/RNA sensors.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712, USA. jmobliosca@utexas.edu.

ABSTRACT
DNA-templated few-atom silver nanoclusters (DNA/Ag NCs) are a new class of organic/inorganic composite nanomaterials whose fluorescence emission can be tuned throughout the visible and near-IR range by simply programming the template sequences. Compared to organic dyes, DNA/Ag NCs can be brighter and more photostable. Compared to quantum dots, DNA/Ag NCs are smaller, less prone to blinking on long timescales, and do not have a toxic core. The preparation of DNA/Ag NCs is simple and there is no need to remove excess precursors as these precursors are non-fluorescent. Our recent discovery of the fluorogenic and color switching properties of DNA/Ag NCs have led to the invention of new molecular probes, termed NanoCluster Beacons (NCBs), for DNA detection, with the capability to differentiate single-nucleotide polymorphisms by emission colors. NCBs are inexpensive, easy to prepare, and compatible with commercial DNA synthesizers. Many other groups have also explored and taken advantage of the environment sensitivities of DNA/Ag NCs in creating new tools for DNA/RNA detection and single-nucleotide polymorphism identification. In this review, we summarize the recent trends in the use of DNA/Ag NCs for developing DNA/RNA sensors.

No MeSH data available.


(a) The turn-on color of NanoCluster Beacons can be tuned by repositioning the enhancer sequence with respect to the NC-nucleation sequence. Schematic shows the relative positions between the enhancer sequence (lower strand, orange line) and the NC-nucleation sequence (upper strand, blue line). The photo shows the associated emission colors under UV excitation. (b) Chameleon NanoCluster Beacons, which take advantage of the repositioning-induced-color-tuning phenomenon, light up into different colors upon binding with distinct SNP targets. Adapted with permission from [31]. Copyright (2012) AmericanChemical Society.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263537&req=5

biosensors-03-00185-f003: (a) The turn-on color of NanoCluster Beacons can be tuned by repositioning the enhancer sequence with respect to the NC-nucleation sequence. Schematic shows the relative positions between the enhancer sequence (lower strand, orange line) and the NC-nucleation sequence (upper strand, blue line). The photo shows the associated emission colors under UV excitation. (b) Chameleon NanoCluster Beacons, which take advantage of the repositioning-induced-color-tuning phenomenon, light up into different colors upon binding with distinct SNP targets. Adapted with permission from [31]. Copyright (2012) AmericanChemical Society.

Mentions: Lately we demonstrated an entirely new phenomenon—the turn-on color of the silver cluster can change substantially depending upon its position relative to an enhancer sequence [31] (Figure 3(a)). Based on this new discovery, we have transformed NCBs from a “turn-on” probe into a “color-switching/turn-on” probe, termed “chameleon” NanoCluster Beacons, cNCBs [31] (Figure 3(b)). The key benefit of this color-switching version of NCBs lies in their capability for a two-dimensional analysis—the fluorescence intensity can be used to quantify the amount of DNA target, whereas fluorescence color can be used to identify the single-nucleotide polymorphisms (SNPs) on the target. Again, this feature is not shared by existing SNP probes [77,78,79], where events without a target cannot be easily differentiated from events with a mismatched target (both give a low signal). Owing to the unique features of NCBs and cNCBs, we envision that NCBs will find more sensing applications in the near future.


DNA/RNA Detection Using DNA-Templated Few-Atom Silver Nanoclusters.

Obliosca JM, Liu C, Batson RA, Babin MC, Werner JH, Yeh HC - Biosensors (Basel) (2013)

(a) The turn-on color of NanoCluster Beacons can be tuned by repositioning the enhancer sequence with respect to the NC-nucleation sequence. Schematic shows the relative positions between the enhancer sequence (lower strand, orange line) and the NC-nucleation sequence (upper strand, blue line). The photo shows the associated emission colors under UV excitation. (b) Chameleon NanoCluster Beacons, which take advantage of the repositioning-induced-color-tuning phenomenon, light up into different colors upon binding with distinct SNP targets. Adapted with permission from [31]. Copyright (2012) AmericanChemical Society.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263537&req=5

biosensors-03-00185-f003: (a) The turn-on color of NanoCluster Beacons can be tuned by repositioning the enhancer sequence with respect to the NC-nucleation sequence. Schematic shows the relative positions between the enhancer sequence (lower strand, orange line) and the NC-nucleation sequence (upper strand, blue line). The photo shows the associated emission colors under UV excitation. (b) Chameleon NanoCluster Beacons, which take advantage of the repositioning-induced-color-tuning phenomenon, light up into different colors upon binding with distinct SNP targets. Adapted with permission from [31]. Copyright (2012) AmericanChemical Society.
Mentions: Lately we demonstrated an entirely new phenomenon—the turn-on color of the silver cluster can change substantially depending upon its position relative to an enhancer sequence [31] (Figure 3(a)). Based on this new discovery, we have transformed NCBs from a “turn-on” probe into a “color-switching/turn-on” probe, termed “chameleon” NanoCluster Beacons, cNCBs [31] (Figure 3(b)). The key benefit of this color-switching version of NCBs lies in their capability for a two-dimensional analysis—the fluorescence intensity can be used to quantify the amount of DNA target, whereas fluorescence color can be used to identify the single-nucleotide polymorphisms (SNPs) on the target. Again, this feature is not shared by existing SNP probes [77,78,79], where events without a target cannot be easily differentiated from events with a mismatched target (both give a low signal). Owing to the unique features of NCBs and cNCBs, we envision that NCBs will find more sensing applications in the near future.

Bottom Line: Compared to quantum dots, DNA/Ag NCs are smaller, less prone to blinking on long timescales, and do not have a toxic core.Many other groups have also explored and taken advantage of the environment sensitivities of DNA/Ag NCs in creating new tools for DNA/RNA detection and single-nucleotide polymorphism identification.In this review, we summarize the recent trends in the use of DNA/Ag NCs for developing DNA/RNA sensors.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX 78712, USA. jmobliosca@utexas.edu.

ABSTRACT
DNA-templated few-atom silver nanoclusters (DNA/Ag NCs) are a new class of organic/inorganic composite nanomaterials whose fluorescence emission can be tuned throughout the visible and near-IR range by simply programming the template sequences. Compared to organic dyes, DNA/Ag NCs can be brighter and more photostable. Compared to quantum dots, DNA/Ag NCs are smaller, less prone to blinking on long timescales, and do not have a toxic core. The preparation of DNA/Ag NCs is simple and there is no need to remove excess precursors as these precursors are non-fluorescent. Our recent discovery of the fluorogenic and color switching properties of DNA/Ag NCs have led to the invention of new molecular probes, termed NanoCluster Beacons (NCBs), for DNA detection, with the capability to differentiate single-nucleotide polymorphisms by emission colors. NCBs are inexpensive, easy to prepare, and compatible with commercial DNA synthesizers. Many other groups have also explored and taken advantage of the environment sensitivities of DNA/Ag NCs in creating new tools for DNA/RNA detection and single-nucleotide polymorphism identification. In this review, we summarize the recent trends in the use of DNA/Ag NCs for developing DNA/RNA sensors.

No MeSH data available.