Limits...
The Heme-Based Oxygen-Sensor Phosphodiesterase Ec DOS (DosP): Structure-Function Relationships.

Shimizu T - Biosensors (Basel) (2013)

Bottom Line: Notably, its activity is markedly enhanced by O2 binding to the heme Fe(II) complex in the PAS sensor domain.X-ray crystal structures and spectroscopic and catalytic characterization of the wild-type and mutant proteins have provided important structural and functional clues to understanding the molecular mechanism of intramolecular catalytic regulation by O2 binding.This review summarizes the intriguing findings that have obtained for Ec DOS.

View Article: PubMed Central - PubMed

Affiliation: Department of Cell Biology, Shantou University Medical College, Shantou 515041, China. shimizu@tagen.tohoku.ac.jp.

ABSTRACT
Escherichia coli Direct Oxygen Sensor (Ec DOS, also known as Ec DosP) is a heme-based O2-sensing phosphodiesterase from Escherichia coli that catalyzes the conversion of cyclic-di-GMP to linear di-GMP. Cyclic-di-GMP is an important second messenger in bacteria, highlighting the importance of understanding structure-function relationships of Ec DOS. Ec DOS is composed of an N-terminal heme-bound O2-sensing PAS domain and a C-terminal phosphodiesterase catalytic domain. Notably, its activity is markedly enhanced by O2 binding to the heme Fe(II) complex in the PAS sensor domain. X-ray crystal structures and spectroscopic and catalytic characterization of the wild-type and mutant proteins have provided important structural and functional clues to understanding the molecular mechanism of intramolecular catalytic regulation by O2 binding. This review summarizes the intriguing findings that have obtained for Ec DOS.

No MeSH data available.


Related in: MedlinePlus

Input signals and output phenotypes of c-di-GMP metabolism. C-di-GMP is an important second messenger for numerous bacterial functions [15,16,17,18]. Various input signals (first signals) regulate degradation or synthesis of c-di-GMP via PDE or DGC activity, respectively, manifesting as different physiological functions. In E. coli, the PDE activity toward c-di-GMP is exerted by the EAL domain of Ec DOS, whereas the DGC activity toward c-di-GMP is exerted by the GGDEF domain of YddV. Adapted from [18].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4263535&req=5

biosensors-03-00211-f002: Input signals and output phenotypes of c-di-GMP metabolism. C-di-GMP is an important second messenger for numerous bacterial functions [15,16,17,18]. Various input signals (first signals) regulate degradation or synthesis of c-di-GMP via PDE or DGC activity, respectively, manifesting as different physiological functions. In E. coli, the PDE activity toward c-di-GMP is exerted by the EAL domain of Ec DOS, whereas the DGC activity toward c-di-GMP is exerted by the GGDEF domain of YddV. Adapted from [18].

Mentions: c-di-GMP is an important second messenger involved in bacterial motility, virulence, development, cell-cell communication, biofilm formation, and numerous other functions (Figure 2) [15,16,17,18]. The C-terminal functional domain of Ec DOS has both EAL and GGDEF subdomains, which are normally associated with c-di-GMP-linearizing (PDE) and c-di-GMP-synthesizing (DGC) activity, respectively [15,16,17]. However, accumulating experimental evidence suggests that Ec DOS acts as c-di-GMP-specific PDE, but does not exhibit DGC activity. Instead, YddV, a heme-based oxygen sensor, has been found to function as a DGC in E. coli [11,12,19]. Thus, two heme-based oxygen sensors, Ec DOS and YddV, function synergistically to regulate c-di-GMP concentration in E. coli in response to various stimuli, leading, for example, to sticky biofilm formation (high c-di-GMP) or high mobility (low c-di-GMP) (Figure 3).


The Heme-Based Oxygen-Sensor Phosphodiesterase Ec DOS (DosP): Structure-Function Relationships.

Shimizu T - Biosensors (Basel) (2013)

Input signals and output phenotypes of c-di-GMP metabolism. C-di-GMP is an important second messenger for numerous bacterial functions [15,16,17,18]. Various input signals (first signals) regulate degradation or synthesis of c-di-GMP via PDE or DGC activity, respectively, manifesting as different physiological functions. In E. coli, the PDE activity toward c-di-GMP is exerted by the EAL domain of Ec DOS, whereas the DGC activity toward c-di-GMP is exerted by the GGDEF domain of YddV. Adapted from [18].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4263535&req=5

biosensors-03-00211-f002: Input signals and output phenotypes of c-di-GMP metabolism. C-di-GMP is an important second messenger for numerous bacterial functions [15,16,17,18]. Various input signals (first signals) regulate degradation or synthesis of c-di-GMP via PDE or DGC activity, respectively, manifesting as different physiological functions. In E. coli, the PDE activity toward c-di-GMP is exerted by the EAL domain of Ec DOS, whereas the DGC activity toward c-di-GMP is exerted by the GGDEF domain of YddV. Adapted from [18].
Mentions: c-di-GMP is an important second messenger involved in bacterial motility, virulence, development, cell-cell communication, biofilm formation, and numerous other functions (Figure 2) [15,16,17,18]. The C-terminal functional domain of Ec DOS has both EAL and GGDEF subdomains, which are normally associated with c-di-GMP-linearizing (PDE) and c-di-GMP-synthesizing (DGC) activity, respectively [15,16,17]. However, accumulating experimental evidence suggests that Ec DOS acts as c-di-GMP-specific PDE, but does not exhibit DGC activity. Instead, YddV, a heme-based oxygen sensor, has been found to function as a DGC in E. coli [11,12,19]. Thus, two heme-based oxygen sensors, Ec DOS and YddV, function synergistically to regulate c-di-GMP concentration in E. coli in response to various stimuli, leading, for example, to sticky biofilm formation (high c-di-GMP) or high mobility (low c-di-GMP) (Figure 3).

Bottom Line: Notably, its activity is markedly enhanced by O2 binding to the heme Fe(II) complex in the PAS sensor domain.X-ray crystal structures and spectroscopic and catalytic characterization of the wild-type and mutant proteins have provided important structural and functional clues to understanding the molecular mechanism of intramolecular catalytic regulation by O2 binding.This review summarizes the intriguing findings that have obtained for Ec DOS.

View Article: PubMed Central - PubMed

Affiliation: Department of Cell Biology, Shantou University Medical College, Shantou 515041, China. shimizu@tagen.tohoku.ac.jp.

ABSTRACT
Escherichia coli Direct Oxygen Sensor (Ec DOS, also known as Ec DosP) is a heme-based O2-sensing phosphodiesterase from Escherichia coli that catalyzes the conversion of cyclic-di-GMP to linear di-GMP. Cyclic-di-GMP is an important second messenger in bacteria, highlighting the importance of understanding structure-function relationships of Ec DOS. Ec DOS is composed of an N-terminal heme-bound O2-sensing PAS domain and a C-terminal phosphodiesterase catalytic domain. Notably, its activity is markedly enhanced by O2 binding to the heme Fe(II) complex in the PAS sensor domain. X-ray crystal structures and spectroscopic and catalytic characterization of the wild-type and mutant proteins have provided important structural and functional clues to understanding the molecular mechanism of intramolecular catalytic regulation by O2 binding. This review summarizes the intriguing findings that have obtained for Ec DOS.

No MeSH data available.


Related in: MedlinePlus