Limits...
Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites.

Nguyen VQ, Ishihara M, Kinoda J, Hattori H, Nakamura S, Ono T, Miyahira Y, Matsui T - J Nanobiotechnology (2014)

Bottom Line: CNFSs were immersed in suspensions of Ag NPs (5.17 ± 1.9 nm in diameter; mean ± SD) for 30 min at room temperature to produce CNFS/Ag NPs.Ultrathin sectioning of bacterial cells also was carried out to observe the bactericidal mechanism of Ag NPs.The TEM images indicated that the Ag NPs are dispersed and tightly adsorbed onto CNFSs.

View Article: PubMed Central - PubMed

Affiliation: Faculty of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo, 191-0065, Japan. imvinhs@yahoo.com.vn.

ABSTRACT

Background: Chitin nanofibers sheets (CNFSs) with nanoscale fiber-like surface structures are nontoxic and biodegradable biomaterials with large surface-to-mass ratio. CNFSs are widely applied as biomedical materials such as a functional wound dressing. This study aimed to develop antimicrobial biomaterials made up of CNFS-immobilized silver nanoparticles (CNFS/Ag NPs).

Materials and methods: CNFSs were immersed in suspensions of Ag NPs (5.17 ± 1.9 nm in diameter; mean ± SD) for 30 min at room temperature to produce CNFS/Ag NPs. CNFS/Ag NPs were characterized by transmission electron microscopy (TEM) and then tested for antimicrobial activities against Escherichia (E.) coli, Pseudomonas (P.) aeruginosa, and H1N1 influenza A virus, three pathogens that represent the most widespread infectious bacteria and viruses. Ultrathin sectioning of bacterial cells also was carried out to observe the bactericidal mechanism of Ag NPs.

Results: The TEM images indicated that the Ag NPs are dispersed and tightly adsorbed onto CNFSs. Although CNFSs alone have only weak antimicrobial activity, CNFS/Ag NPs showed much stronger antimicrobial properties against E. coli, P. aeruginosa, and influenza A virus, with the amount of immobilized Ag NPs onto CNFSs.

Conclusions: Our results suggest that CNFS/Ag NPs interacting with those microbes exhibit stronger antimicrobial activities, and that it is possible to apply CNFS/Ag NPs as anti-virus sheets as well as anti-infectious wound dressings.

No MeSH data available.


Related in: MedlinePlus

SEM and TEM images of CNFS. SEM image of CNFS; scale bar represents 1 μm (A). TEM image of CNFS/Ag NPs composite sheet; scale bar represents 100 nm (B).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4263038&req=5

Fig2: SEM and TEM images of CNFS. SEM image of CNFS; scale bar represents 1 μm (A). TEM image of CNFS/Ag NPs composite sheet; scale bar represents 100 nm (B).

Mentions: The surface morphology of the CNFS has been characterized using SEM imaging. The CNFS has a nanoscale fiber-like surface structure (Figure 2A). TEM observation of CNFS/Ag NPs revealed that the Ag NPs were stably adsorbed to the surface of CNFS (Figure 2B). Based on comparison of absorbance values of Ag NP suspension before and after reaction with CNFS, along with the equation for the standard curve of absorbance at 390.5 nm as a function of the concentration of Ag NPs in suspension, we estimated that Ag NPs were immobilized on CNFS at 8. 45 μg per cm2 (Figure 3A and Figure 3B).Figure 2


Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites.

Nguyen VQ, Ishihara M, Kinoda J, Hattori H, Nakamura S, Ono T, Miyahira Y, Matsui T - J Nanobiotechnology (2014)

SEM and TEM images of CNFS. SEM image of CNFS; scale bar represents 1 μm (A). TEM image of CNFS/Ag NPs composite sheet; scale bar represents 100 nm (B).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4263038&req=5

Fig2: SEM and TEM images of CNFS. SEM image of CNFS; scale bar represents 1 μm (A). TEM image of CNFS/Ag NPs composite sheet; scale bar represents 100 nm (B).
Mentions: The surface morphology of the CNFS has been characterized using SEM imaging. The CNFS has a nanoscale fiber-like surface structure (Figure 2A). TEM observation of CNFS/Ag NPs revealed that the Ag NPs were stably adsorbed to the surface of CNFS (Figure 2B). Based on comparison of absorbance values of Ag NP suspension before and after reaction with CNFS, along with the equation for the standard curve of absorbance at 390.5 nm as a function of the concentration of Ag NPs in suspension, we estimated that Ag NPs were immobilized on CNFS at 8. 45 μg per cm2 (Figure 3A and Figure 3B).Figure 2

Bottom Line: CNFSs were immersed in suspensions of Ag NPs (5.17 ± 1.9 nm in diameter; mean ± SD) for 30 min at room temperature to produce CNFS/Ag NPs.Ultrathin sectioning of bacterial cells also was carried out to observe the bactericidal mechanism of Ag NPs.The TEM images indicated that the Ag NPs are dispersed and tightly adsorbed onto CNFSs.

View Article: PubMed Central - PubMed

Affiliation: Faculty of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo, 191-0065, Japan. imvinhs@yahoo.com.vn.

ABSTRACT

Background: Chitin nanofibers sheets (CNFSs) with nanoscale fiber-like surface structures are nontoxic and biodegradable biomaterials with large surface-to-mass ratio. CNFSs are widely applied as biomedical materials such as a functional wound dressing. This study aimed to develop antimicrobial biomaterials made up of CNFS-immobilized silver nanoparticles (CNFS/Ag NPs).

Materials and methods: CNFSs were immersed in suspensions of Ag NPs (5.17 ± 1.9 nm in diameter; mean ± SD) for 30 min at room temperature to produce CNFS/Ag NPs. CNFS/Ag NPs were characterized by transmission electron microscopy (TEM) and then tested for antimicrobial activities against Escherichia (E.) coli, Pseudomonas (P.) aeruginosa, and H1N1 influenza A virus, three pathogens that represent the most widespread infectious bacteria and viruses. Ultrathin sectioning of bacterial cells also was carried out to observe the bactericidal mechanism of Ag NPs.

Results: The TEM images indicated that the Ag NPs are dispersed and tightly adsorbed onto CNFSs. Although CNFSs alone have only weak antimicrobial activity, CNFS/Ag NPs showed much stronger antimicrobial properties against E. coli, P. aeruginosa, and influenza A virus, with the amount of immobilized Ag NPs onto CNFSs.

Conclusions: Our results suggest that CNFS/Ag NPs interacting with those microbes exhibit stronger antimicrobial activities, and that it is possible to apply CNFS/Ag NPs as anti-virus sheets as well as anti-infectious wound dressings.

No MeSH data available.


Related in: MedlinePlus