Limits...
Spiders on a Hot Volcanic Roof: Colonisation Pathways and Phylogeography of the Canary Islands Endemic Trap-Door Spider Titanidiops canariensis (Araneae, Idiopidae).

Opatova V, Arnedo MA - PLoS ONE (2014)

Bottom Line: Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain.Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation.In addition, T. maroccanus may harbour several cryptic species.

View Article: PubMed Central - PubMed

Affiliation: Institut de Recerca de la Biodiversitat & Departament de Biologia Animal, Universitat de Barcelona, Barcelona, Spain.

ABSTRACT
Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.

No MeSH data available.


Chronograms obtained with (a) the concatenated approach using BEAST and with (b) the multispecies coalescent (species tree) approach using *BEAST.Dots on nodes denote Bayesian posterior probabilities above 0.95. Node bars indicate the 95% HPD confidence intervals of the divergence time. The common x-axis is time in million years (My). Terminal colour codes are as in the figure inset. Samples from the localities marked as stars on the map were only included in the concatenated approach.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4262472&req=5

pone-0115078-g005: Chronograms obtained with (a) the concatenated approach using BEAST and with (b) the multispecies coalescent (species tree) approach using *BEAST.Dots on nodes denote Bayesian posterior probabilities above 0.95. Node bars indicate the 95% HPD confidence intervals of the divergence time. The common x-axis is time in million years (My). Terminal colour codes are as in the figure inset. Samples from the localities marked as stars on the map were only included in the concatenated approach.

Mentions: Overall, the tree topology and the clade supports were similar to those found in the Bayesian and ML analyses. The root was assigned to the split between T. canariensis and the clade formed by the Moroccan Titanidiops lineages and I. syriacus (Fig. 5), and it was estimated to have occurred approximately 12 million years ago (Ma) (12.37, 24.65–6.41 Ma). The most recent common ancestor (TMRCA) of T. canariensis was estimated at 8.08 Ma (16.01–4.16 Ma). The diversification of the JSF clade began 2.86 Ma (5.74–1.39 Ma), while the L clade and the FL began diversifying earlier, 6.98 Ma (13.82–3.57 Ma).


Spiders on a Hot Volcanic Roof: Colonisation Pathways and Phylogeography of the Canary Islands Endemic Trap-Door Spider Titanidiops canariensis (Araneae, Idiopidae).

Opatova V, Arnedo MA - PLoS ONE (2014)

Chronograms obtained with (a) the concatenated approach using BEAST and with (b) the multispecies coalescent (species tree) approach using *BEAST.Dots on nodes denote Bayesian posterior probabilities above 0.95. Node bars indicate the 95% HPD confidence intervals of the divergence time. The common x-axis is time in million years (My). Terminal colour codes are as in the figure inset. Samples from the localities marked as stars on the map were only included in the concatenated approach.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4262472&req=5

pone-0115078-g005: Chronograms obtained with (a) the concatenated approach using BEAST and with (b) the multispecies coalescent (species tree) approach using *BEAST.Dots on nodes denote Bayesian posterior probabilities above 0.95. Node bars indicate the 95% HPD confidence intervals of the divergence time. The common x-axis is time in million years (My). Terminal colour codes are as in the figure inset. Samples from the localities marked as stars on the map were only included in the concatenated approach.
Mentions: Overall, the tree topology and the clade supports were similar to those found in the Bayesian and ML analyses. The root was assigned to the split between T. canariensis and the clade formed by the Moroccan Titanidiops lineages and I. syriacus (Fig. 5), and it was estimated to have occurred approximately 12 million years ago (Ma) (12.37, 24.65–6.41 Ma). The most recent common ancestor (TMRCA) of T. canariensis was estimated at 8.08 Ma (16.01–4.16 Ma). The diversification of the JSF clade began 2.86 Ma (5.74–1.39 Ma), while the L clade and the FL began diversifying earlier, 6.98 Ma (13.82–3.57 Ma).

Bottom Line: Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain.Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation.In addition, T. maroccanus may harbour several cryptic species.

View Article: PubMed Central - PubMed

Affiliation: Institut de Recerca de la Biodiversitat & Departament de Biologia Animal, Universitat de Barcelona, Barcelona, Spain.

ABSTRACT
Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.

No MeSH data available.