Limits...
Spiders on a Hot Volcanic Roof: Colonisation Pathways and Phylogeography of the Canary Islands Endemic Trap-Door Spider Titanidiops canariensis (Araneae, Idiopidae).

Opatova V, Arnedo MA - PLoS ONE (2014)

Bottom Line: Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain.Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation.In addition, T. maroccanus may harbour several cryptic species.

View Article: PubMed Central - PubMed

Affiliation: Institut de Recerca de la Biodiversitat & Departament de Biologia Animal, Universitat de Barcelona, Barcelona, Spain.

ABSTRACT
Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.

No MeSH data available.


Titanidiops sampling locations, 1: Barranco del Ciervo, 2: Cofete, 3: Pico de Fraile, 4: Barranco Mal Nombre, 5: Tequital, 6: Caldera la Laguna, 7: Betancuria, 8: Valle de Aguas Verdes, 9: Faro Tscón, 10: Corralejo, 11: Villaverde, 12: Caldería de la Roja, 13: Salinas de Janubio, 14: Tinajo, 15: Tinache, 16: Valle de Malpaso, 17: Valle de Guinate, 18: Montaña de Mojón, 19: El Vallichuelo, 20: Mirador del Río, 21: Barranco Hondo del Valle, 22: Tejía, 23: Smi-Mou, 24: Kemis-oulat-el-Hadj, 25: Ouzoud Falls rd., 26: Jbele Amsittene, 27: Tamanat - Aid-Beoude rd., 28: Iguer rd., 29: Imoza rd. nr. Tourarin, 30: Ait-Aisa, 31: Aid-Baha.For detailed information, see S1 Table. The map was created using SimpleMappr http://www.simplemappr.net/. Circled areas correspond to the location of the Volcanic Complexes on Fuerteventura and Lanzarote [75]. SVC: Southern Volcanic Complex, CVC: Central Volcanic Complex, NVC: Northern Volcanic Complex, AJA: Los Ajaches, FAM: Famara.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4262472&req=5

pone-0115078-g001: Titanidiops sampling locations, 1: Barranco del Ciervo, 2: Cofete, 3: Pico de Fraile, 4: Barranco Mal Nombre, 5: Tequital, 6: Caldera la Laguna, 7: Betancuria, 8: Valle de Aguas Verdes, 9: Faro Tscón, 10: Corralejo, 11: Villaverde, 12: Caldería de la Roja, 13: Salinas de Janubio, 14: Tinajo, 15: Tinache, 16: Valle de Malpaso, 17: Valle de Guinate, 18: Montaña de Mojón, 19: El Vallichuelo, 20: Mirador del Río, 21: Barranco Hondo del Valle, 22: Tejía, 23: Smi-Mou, 24: Kemis-oulat-el-Hadj, 25: Ouzoud Falls rd., 26: Jbele Amsittene, 27: Tamanat - Aid-Beoude rd., 28: Iguer rd., 29: Imoza rd. nr. Tourarin, 30: Ait-Aisa, 31: Aid-Baha.For detailed information, see S1 Table. The map was created using SimpleMappr http://www.simplemappr.net/. Circled areas correspond to the location of the Volcanic Complexes on Fuerteventura and Lanzarote [75]. SVC: Southern Volcanic Complex, CVC: Central Volcanic Complex, NVC: Northern Volcanic Complex, AJA: Los Ajaches, FAM: Famara.

Mentions: The Canary Islands archipelago lies in the Atlantic Ocean, approximately 110 km from the north-western coast of Africa, comprising seven main islands and several smaller islets (Fig. 1). The region harbours a significant number of endemic organisms; 50% of the known invertebrates and 27% of the vascular plants inhabiting the archipelago are Canarian endemics. This extraordinary biological richness has been traditionally interpreted in many organisms as a relict of the Tertiary Mediterranean diversity, but the advent of molecular phylogenetics revealed a large amount of in situ diversification [10]. Some groups, however, have colonised the archipelago repeatedly [11], [12], [13], [14].


Spiders on a Hot Volcanic Roof: Colonisation Pathways and Phylogeography of the Canary Islands Endemic Trap-Door Spider Titanidiops canariensis (Araneae, Idiopidae).

Opatova V, Arnedo MA - PLoS ONE (2014)

Titanidiops sampling locations, 1: Barranco del Ciervo, 2: Cofete, 3: Pico de Fraile, 4: Barranco Mal Nombre, 5: Tequital, 6: Caldera la Laguna, 7: Betancuria, 8: Valle de Aguas Verdes, 9: Faro Tscón, 10: Corralejo, 11: Villaverde, 12: Caldería de la Roja, 13: Salinas de Janubio, 14: Tinajo, 15: Tinache, 16: Valle de Malpaso, 17: Valle de Guinate, 18: Montaña de Mojón, 19: El Vallichuelo, 20: Mirador del Río, 21: Barranco Hondo del Valle, 22: Tejía, 23: Smi-Mou, 24: Kemis-oulat-el-Hadj, 25: Ouzoud Falls rd., 26: Jbele Amsittene, 27: Tamanat - Aid-Beoude rd., 28: Iguer rd., 29: Imoza rd. nr. Tourarin, 30: Ait-Aisa, 31: Aid-Baha.For detailed information, see S1 Table. The map was created using SimpleMappr http://www.simplemappr.net/. Circled areas correspond to the location of the Volcanic Complexes on Fuerteventura and Lanzarote [75]. SVC: Southern Volcanic Complex, CVC: Central Volcanic Complex, NVC: Northern Volcanic Complex, AJA: Los Ajaches, FAM: Famara.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4262472&req=5

pone-0115078-g001: Titanidiops sampling locations, 1: Barranco del Ciervo, 2: Cofete, 3: Pico de Fraile, 4: Barranco Mal Nombre, 5: Tequital, 6: Caldera la Laguna, 7: Betancuria, 8: Valle de Aguas Verdes, 9: Faro Tscón, 10: Corralejo, 11: Villaverde, 12: Caldería de la Roja, 13: Salinas de Janubio, 14: Tinajo, 15: Tinache, 16: Valle de Malpaso, 17: Valle de Guinate, 18: Montaña de Mojón, 19: El Vallichuelo, 20: Mirador del Río, 21: Barranco Hondo del Valle, 22: Tejía, 23: Smi-Mou, 24: Kemis-oulat-el-Hadj, 25: Ouzoud Falls rd., 26: Jbele Amsittene, 27: Tamanat - Aid-Beoude rd., 28: Iguer rd., 29: Imoza rd. nr. Tourarin, 30: Ait-Aisa, 31: Aid-Baha.For detailed information, see S1 Table. The map was created using SimpleMappr http://www.simplemappr.net/. Circled areas correspond to the location of the Volcanic Complexes on Fuerteventura and Lanzarote [75]. SVC: Southern Volcanic Complex, CVC: Central Volcanic Complex, NVC: Northern Volcanic Complex, AJA: Los Ajaches, FAM: Famara.
Mentions: The Canary Islands archipelago lies in the Atlantic Ocean, approximately 110 km from the north-western coast of Africa, comprising seven main islands and several smaller islets (Fig. 1). The region harbours a significant number of endemic organisms; 50% of the known invertebrates and 27% of the vascular plants inhabiting the archipelago are Canarian endemics. This extraordinary biological richness has been traditionally interpreted in many organisms as a relict of the Tertiary Mediterranean diversity, but the advent of molecular phylogenetics revealed a large amount of in situ diversification [10]. Some groups, however, have colonised the archipelago repeatedly [11], [12], [13], [14].

Bottom Line: Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain.Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation.In addition, T. maroccanus may harbour several cryptic species.

View Article: PubMed Central - PubMed

Affiliation: Institut de Recerca de la Biodiversitat & Departament de Biologia Animal, Universitat de Barcelona, Barcelona, Spain.

ABSTRACT
Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.

No MeSH data available.