Limits...
Sting, Carry and Stock: How Corpse Availability Can Regulate De-Centralized Task Allocation in a Ponerine Ant Colony.

Schmickl T, Karsai I - PLoS ONE (2014)

Bottom Line: The common stomach is able to establish and to keep stabilized an effective mix of workforce to exploit the prey population and to transport food into the nest.The model is compared to previously published models that followed a different modeling approach.Based on our model analysis we also suggest a series of experiments for which our model gives plausible predictions.

View Article: PubMed Central - PubMed

Affiliation: Department of Zoology, Karl-Franzens-University, Graz, Austria.

ABSTRACT
We develop a model to produce plausible patterns of task partitioning in the ponerine ant Ectatomma ruidum based on the availability of living prey and prey corpses. The model is based on the organizational capabilities of a "common stomach" through which the colony utilizes the availability of a natural (food) substance as a major communication channel to regulate the income and expenditure of the very same substance. This communication channel has also a central role in regulating task partitioning of collective hunting behavior in a supply&demand-driven manner. Our model shows that task partitioning of the collective hunting behavior in E. ruidum can be explained by regulation due to a common stomach system. The saturation of the common stomach provides accessible information to individual ants so that they can adjust their hunting behavior accordingly by engaging in or by abandoning from stinging or transporting tasks. The common stomach is able to establish and to keep stabilized an effective mix of workforce to exploit the prey population and to transport food into the nest. This system is also able to react to external perturbations in a de-centralized homeostatic way, such as to changes in the prey density or to accumulation of food in the nest. In case of stable conditions the system develops towards an equilibrium concerning colony size and prey density. Our model shows that organization of work through a common stomach system can allow Ectatomma ruidum to collectively forage for food in a robust, reactive and reliable way. The model is compared to previously published models that followed a different modeling approach. Based on our model analysis we also suggest a series of experiments for which our model gives plausible predictions. These predictions are used to formulate a set of testable hypotheses that should be investigated empirically in future experimentation.

No MeSH data available.


Related in: MedlinePlus

The model of predicting the fraction of actively hunting ants as a function of the total population of the ant colony (black line).The circular data points indicate empirical observations of Schatz ([27], Fig. 1B in their paper). The presented curve fitting yields a summarized squared error of ε2 <0.0007.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4262436&req=5

pone-0114611-g003: The model of predicting the fraction of actively hunting ants as a function of the total population of the ant colony (black line).The circular data points indicate empirical observations of Schatz ([27], Fig. 1B in their paper). The presented curve fitting yields a summarized squared error of ε2 <0.0007.

Mentions: As it is pointed out in Schatz et al., [27], the fraction of ants that engage in the hunting task in the full colony population () depends on the colony size. He found that smaller colonies have a higher fraction of workers engaging in hunting than larger colonies. By using optimal fitting technique we found the best fit for Schatz et al., [27], Fig. 1B in their paper) data described by the curve to the field data (Fig. 3 and equation 4).(4)


Sting, Carry and Stock: How Corpse Availability Can Regulate De-Centralized Task Allocation in a Ponerine Ant Colony.

Schmickl T, Karsai I - PLoS ONE (2014)

The model of predicting the fraction of actively hunting ants as a function of the total population of the ant colony (black line).The circular data points indicate empirical observations of Schatz ([27], Fig. 1B in their paper). The presented curve fitting yields a summarized squared error of ε2 <0.0007.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4262436&req=5

pone-0114611-g003: The model of predicting the fraction of actively hunting ants as a function of the total population of the ant colony (black line).The circular data points indicate empirical observations of Schatz ([27], Fig. 1B in their paper). The presented curve fitting yields a summarized squared error of ε2 <0.0007.
Mentions: As it is pointed out in Schatz et al., [27], the fraction of ants that engage in the hunting task in the full colony population () depends on the colony size. He found that smaller colonies have a higher fraction of workers engaging in hunting than larger colonies. By using optimal fitting technique we found the best fit for Schatz et al., [27], Fig. 1B in their paper) data described by the curve to the field data (Fig. 3 and equation 4).(4)

Bottom Line: The common stomach is able to establish and to keep stabilized an effective mix of workforce to exploit the prey population and to transport food into the nest.The model is compared to previously published models that followed a different modeling approach.Based on our model analysis we also suggest a series of experiments for which our model gives plausible predictions.

View Article: PubMed Central - PubMed

Affiliation: Department of Zoology, Karl-Franzens-University, Graz, Austria.

ABSTRACT
We develop a model to produce plausible patterns of task partitioning in the ponerine ant Ectatomma ruidum based on the availability of living prey and prey corpses. The model is based on the organizational capabilities of a "common stomach" through which the colony utilizes the availability of a natural (food) substance as a major communication channel to regulate the income and expenditure of the very same substance. This communication channel has also a central role in regulating task partitioning of collective hunting behavior in a supply&demand-driven manner. Our model shows that task partitioning of the collective hunting behavior in E. ruidum can be explained by regulation due to a common stomach system. The saturation of the common stomach provides accessible information to individual ants so that they can adjust their hunting behavior accordingly by engaging in or by abandoning from stinging or transporting tasks. The common stomach is able to establish and to keep stabilized an effective mix of workforce to exploit the prey population and to transport food into the nest. This system is also able to react to external perturbations in a de-centralized homeostatic way, such as to changes in the prey density or to accumulation of food in the nest. In case of stable conditions the system develops towards an equilibrium concerning colony size and prey density. Our model shows that organization of work through a common stomach system can allow Ectatomma ruidum to collectively forage for food in a robust, reactive and reliable way. The model is compared to previously published models that followed a different modeling approach. Based on our model analysis we also suggest a series of experiments for which our model gives plausible predictions. These predictions are used to formulate a set of testable hypotheses that should be investigated empirically in future experimentation.

No MeSH data available.


Related in: MedlinePlus