Limits...
Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

Krishnamoorthi S, Perotti LE, Borgstrom NP, Ajijola OA, Frid A, Ponnaluri AV, Weiss JN, Qu Z, Klug WS, Ennis DB, Garfinkel A - PLoS ONE (2014)

Bottom Line: We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time.We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential.Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California, United States of America.

ABSTRACT
We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

No MeSH data available.


Related in: MedlinePlus

Purkinje models.(A) Low and (B) high PMJ densities.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4262432&req=5

pone-0114494-g003: Purkinje models.(A) Low and (B) high PMJ densities.

Mentions: Low PMJ Model: This model has 54 PMJs. In both the LV and RV, a primary fascicle branches near the mid-septum, with the resulting branches traveling anteriorly and posteriorly. The posterior branch divides, continuing into the posterior base and the ventricular free wall, while the anterior branch terminates in the anterior base. There is a large region of the endocardial surface which is not connected to PMJs, and hence here cell-to-cell diffusion is the main mechanism of voltage propagation (Fig. 3A)


Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

Krishnamoorthi S, Perotti LE, Borgstrom NP, Ajijola OA, Frid A, Ponnaluri AV, Weiss JN, Qu Z, Klug WS, Ennis DB, Garfinkel A - PLoS ONE (2014)

Purkinje models.(A) Low and (B) high PMJ densities.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4262432&req=5

pone-0114494-g003: Purkinje models.(A) Low and (B) high PMJ densities.
Mentions: Low PMJ Model: This model has 54 PMJs. In both the LV and RV, a primary fascicle branches near the mid-septum, with the resulting branches traveling anteriorly and posteriorly. The posterior branch divides, continuing into the posterior base and the ventricular free wall, while the anterior branch terminates in the anterior base. There is a large region of the endocardial surface which is not connected to PMJs, and hence here cell-to-cell diffusion is the main mechanism of voltage propagation (Fig. 3A)

Bottom Line: We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time.We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential.Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California, United States of America.

ABSTRACT
We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

No MeSH data available.


Related in: MedlinePlus