Limits...
Receptor for advanced glycation end products - membrane type1 matrix metalloproteinase axis regulates tissue factor expression via RhoA and Rac1 activation in high-mobility group box-1 stimulated endothelial cells.

Sugimoto K, Ohkawara H, Nakamura Y, Takuwa Y, Ishibashi T, Takeishi Y - PLoS ONE (2014)

Bottom Line: Pull-down assays and Western blotting revealed that HMGB-1 induced RhoA/Rac1 activation and NF-kB phosphorylation in cultured human aortic endothelial cells.HMGB-1 increased the activity of MT1-MMP, and inhibition of RAGE or MT1-MMP by siRNA suppressed HMGB-1-induced TF upregulation as well as HMGB-1-triggered RhoA/Rac1 activation and NF-kB phosphorylation.The present study showed that RAGE/MT1-MMP axis modified HMBG-1-mediated TF expression through RhoA and Rac1 activation and NF-κB phosphorylation in endothelial cells.

View Article: PubMed Central - PubMed

Affiliation: Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan.

ABSTRACT

Background: Atherosclerosis is understood to be a blood vessel inflammation. High-mobility group box-1 (HMGB-1) plays a key role in the systemic inflammation. Tissue factor (TF) is known to lead to inflammation which promotes thrombus formation. Membrane type1 matrix metalloprotease (MT1-MMP) associates with advanced glycation endproducts (AGE) triggered-TF protein expression and phosphorylation of NF-κB. However, it is still unclear about the correlation of MT1-MMP and HMBG-1-mediated TF expression. In this study, we investigated the molecular mechanisms of TF expression in response to HMGB-1 stimulation and the involvement of MT1-MMP in endothelial cells.

Methods and results: Pull-down assays and Western blotting revealed that HMGB-1 induced RhoA/Rac1 activation and NF-kB phosphorylation in cultured human aortic endothelial cells. HMGB-1 increased the activity of MT1-MMP, and inhibition of RAGE or MT1-MMP by siRNA suppressed HMGB-1-induced TF upregulation as well as HMGB-1-triggered RhoA/Rac1 activation and NF-kB phosphorylation.

Conclusions: The present study showed that RAGE/MT1-MMP axis modified HMBG-1-mediated TF expression through RhoA and Rac1 activation and NF-κB phosphorylation in endothelial cells. These results suggested that MT1-MMP was involved in vascular inflammation and might be a good target for treating atherosclerosis.

Show MeSH

Related in: MedlinePlus

Colocalization and binding of RAGE and MT1-MMP in endothelial cells.(A) Association of RAGE and MT1-MMP according to fluorescent immunohistochemistry. Merged image indicates that RAGE is partially colocalized with MT1-MMP. Photomicrographs are from an experiment representative of 3 independent experiments. (B) Formation of a complex of RAGE and MT1-MMP as determined by immunoprecipitation with or without HMGB-1 stimulation. Immunoprecipitates made using an isotype-matched control antibody did not show 44-kDa band (Fig. 6B, lane 1 and 3), whereas 44 kDa band recognized by immunoblotting with anti-RAGE antibody was detected in the MT1-MMP-immunoprecipitates (Fig. 6B, lane 2 and 4).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4260861&req=5

pone-0114429-g006: Colocalization and binding of RAGE and MT1-MMP in endothelial cells.(A) Association of RAGE and MT1-MMP according to fluorescent immunohistochemistry. Merged image indicates that RAGE is partially colocalized with MT1-MMP. Photomicrographs are from an experiment representative of 3 independent experiments. (B) Formation of a complex of RAGE and MT1-MMP as determined by immunoprecipitation with or without HMGB-1 stimulation. Immunoprecipitates made using an isotype-matched control antibody did not show 44-kDa band (Fig. 6B, lane 1 and 3), whereas 44 kDa band recognized by immunoblotting with anti-RAGE antibody was detected in the MT1-MMP-immunoprecipitates (Fig. 6B, lane 2 and 4).

Mentions: The immunostaining was performed to observe the distributions of MT1-MMP and RAGE in HAECs. Fig. 6A shows that MT1-MMP partially localized with RAGE.


Receptor for advanced glycation end products - membrane type1 matrix metalloproteinase axis regulates tissue factor expression via RhoA and Rac1 activation in high-mobility group box-1 stimulated endothelial cells.

Sugimoto K, Ohkawara H, Nakamura Y, Takuwa Y, Ishibashi T, Takeishi Y - PLoS ONE (2014)

Colocalization and binding of RAGE and MT1-MMP in endothelial cells.(A) Association of RAGE and MT1-MMP according to fluorescent immunohistochemistry. Merged image indicates that RAGE is partially colocalized with MT1-MMP. Photomicrographs are from an experiment representative of 3 independent experiments. (B) Formation of a complex of RAGE and MT1-MMP as determined by immunoprecipitation with or without HMGB-1 stimulation. Immunoprecipitates made using an isotype-matched control antibody did not show 44-kDa band (Fig. 6B, lane 1 and 3), whereas 44 kDa band recognized by immunoblotting with anti-RAGE antibody was detected in the MT1-MMP-immunoprecipitates (Fig. 6B, lane 2 and 4).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4260861&req=5

pone-0114429-g006: Colocalization and binding of RAGE and MT1-MMP in endothelial cells.(A) Association of RAGE and MT1-MMP according to fluorescent immunohistochemistry. Merged image indicates that RAGE is partially colocalized with MT1-MMP. Photomicrographs are from an experiment representative of 3 independent experiments. (B) Formation of a complex of RAGE and MT1-MMP as determined by immunoprecipitation with or without HMGB-1 stimulation. Immunoprecipitates made using an isotype-matched control antibody did not show 44-kDa band (Fig. 6B, lane 1 and 3), whereas 44 kDa band recognized by immunoblotting with anti-RAGE antibody was detected in the MT1-MMP-immunoprecipitates (Fig. 6B, lane 2 and 4).
Mentions: The immunostaining was performed to observe the distributions of MT1-MMP and RAGE in HAECs. Fig. 6A shows that MT1-MMP partially localized with RAGE.

Bottom Line: Pull-down assays and Western blotting revealed that HMGB-1 induced RhoA/Rac1 activation and NF-kB phosphorylation in cultured human aortic endothelial cells.HMGB-1 increased the activity of MT1-MMP, and inhibition of RAGE or MT1-MMP by siRNA suppressed HMGB-1-induced TF upregulation as well as HMGB-1-triggered RhoA/Rac1 activation and NF-kB phosphorylation.The present study showed that RAGE/MT1-MMP axis modified HMBG-1-mediated TF expression through RhoA and Rac1 activation and NF-κB phosphorylation in endothelial cells.

View Article: PubMed Central - PubMed

Affiliation: Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan.

ABSTRACT

Background: Atherosclerosis is understood to be a blood vessel inflammation. High-mobility group box-1 (HMGB-1) plays a key role in the systemic inflammation. Tissue factor (TF) is known to lead to inflammation which promotes thrombus formation. Membrane type1 matrix metalloprotease (MT1-MMP) associates with advanced glycation endproducts (AGE) triggered-TF protein expression and phosphorylation of NF-κB. However, it is still unclear about the correlation of MT1-MMP and HMBG-1-mediated TF expression. In this study, we investigated the molecular mechanisms of TF expression in response to HMGB-1 stimulation and the involvement of MT1-MMP in endothelial cells.

Methods and results: Pull-down assays and Western blotting revealed that HMGB-1 induced RhoA/Rac1 activation and NF-kB phosphorylation in cultured human aortic endothelial cells. HMGB-1 increased the activity of MT1-MMP, and inhibition of RAGE or MT1-MMP by siRNA suppressed HMGB-1-induced TF upregulation as well as HMGB-1-triggered RhoA/Rac1 activation and NF-kB phosphorylation.

Conclusions: The present study showed that RAGE/MT1-MMP axis modified HMBG-1-mediated TF expression through RhoA and Rac1 activation and NF-κB phosphorylation in endothelial cells. These results suggested that MT1-MMP was involved in vascular inflammation and might be a good target for treating atherosclerosis.

Show MeSH
Related in: MedlinePlus